RMQ问题之ST算法

ST算法的基本原理百度一下就可以知道  

RMQ(Range Minimum/Maximum Query)问题是求区间最值问题。可以写一个线段树,但是预处理和查询的复杂度都是O(logn)。这里有更牛的算法,就是ST算法,它可以做到O(nlogn)的预处理,O(1)!!!地回答每个询问。
    来看一下ST算法是怎么实现的(以最大值为例):
       
    首先是预处理,用一个DP解决。设a[i]是要求区间最值的数列,f[i,j]表示从第i个数起连续2^j个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7 ,f[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。f[1,2]=5,f[1,3]=8,f[2,0]=2,f[2,1]=4……从这里可以看出f[i,0]其实就等于a[i]。这样,Dp的状态、初值都已经有了,剩下的就是状态转移方程。我们把f[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。f[i,j]就是这两段的最大值中的最大值。于是我们得到了动规方程F[i,j]=max(F[i,j-1],F[i+2^(j-i),j-1]).
     
    接下来是得出最值,也许你想不到计算出f[i,j]有什么用处,一般毛想想计算max还是要O(logn),甚至O(n)。但有一个很好的办法,做到了O(1)。还是分开来。如在上例中我们要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。扩展到一般情况,就是把区间[l,r]分成两个长度为2^n的区间(保证有f[i,j]对应) 

[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <algorithm>  
  3. #include <cstring>  
  4. #include <string>  
  5. #include <cstdio>  
  6. #include <cmath>  
  7. #include <queue>  
  8. #include <map>  
  9. #include <set>  
  10. #define eps 1e-5  
  11. #define MAXN 55555  
  12. #define MAXM 11111  
  13. #define INF 1000000000  
  14. #define lch(x) x<<1  
  15. #define rch(x) x<<1|1  
  16. #define lson l,m,rt<<1  
  17. #define rson m+1,r,rt<<1|1  
  18. using namespace std;  
  19. int mi[MAXN][17], mx[MAXN][17], w[MAXN];  
  20. int n, q;  
  21. void rmqinit()  
  22. {  
  23.     for(int i = 1; i <= n; i++) mi[i][0] = mx[i][0] = w[i];  
  24.     int m = (int)(log(n * 1.0) / log(2.0));  
  25.     for(int i = 1; i <= m; i++)  
  26.         for(int j = 1; j <= n; j++)  
  27.         {  
  28.             mx[j][i] = mx[j][i - 1];  
  29.             if(j + (1 << (i - 1)) <= n) mx[j][i] = max(mx[j][i], mx[j + (1 << (i - 1))][i - 1]);  
  30.             mi[j][i] = mi[j][i - 1];  
  31.             if(j + (1 << (i - 1)) <= n) mi[j][i] = min(mi[j][i], mi[j + (1 << (i - 1))][i - 1]);  
  32.         }  
  33. }  
  34. int rmqmin(int l,int r)  
  35. {  
  36.     int m = (int)(log((r - l + 1) * 1.0) / log(2.0));  
  37.     return min(mi[l][m] , mi[r - (1 << m) + 1][m]);  
  38. }  
  39. int rmqmax(int l,int r)  
  40. {  
  41.     int m = (int)(log((r - l + 1) * 1.0) / log(2.0));  
  42.     return max(mx[l][m] , mx[r - (1 << m) + 1][m]);  
  43. }  
  44. int main()  
  45. {  
  46.     scanf("%d%d", &n, &q);  
  47.     for(int i = 1; i <= n; i++) scanf("%d", &w[i]);  
  48.     rmqinit();  
  49.     int l, r;  
  50.     while(q--)  
  51.     {  
  52.         scanf("%d%d", &l, &r);  
  53.         printf("%d\n", rmqmax(l, r));  
  54.     }  
  55.     return 0;  
  56. }  

至于要返回下标呢 

其实稍微改动一下就行了

[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <algorithm>  
  3. #include <cstring>  
  4. #include <string>  
  5. #include <cstdio>  
  6. #include <cmath>  
  7. #include <queue>  
  8. #include <map>  
  9. #include <set>  
  10. #define eps 1e-5  
  11. #define MAXN 55555  
  12. #define MAXM 11111  
  13. #define INF 1000000000  
  14. #define lch(x) x<<1  
  15. #define rch(x) x<<1|1  
  16. #define lson l,m,rt<<1  
  17. #define rson m+1,r,rt<<1|1  
  18. using namespace std;  
  19. int mi[MAXN][17], mx[MAXN][17], w[MAXN];  
  20. int n, q;  
  21. void rmqinit()  
  22. {  
  23.     for(int i = 1; i <= n; i++) mi[i][0] = mx[i][0] = i;  
  24.     int m = (int)(log(n * 1.0) / log(2.0));  
  25.     for(int i = 1; i <= m; i++)  
  26.         for(int j = 1; j <= n; j++)  
  27.         {  
  28.             mx[j][i] = mx[j][i - 1];  
  29.             mi[j][i] = mi[j][i - 1];  
  30.             if(j + (1 << (i - 1)) <= n)  
  31.             {  
  32.                 if(w[mx[j][i]] < w[mx[j + (1 << (i - 1))][i - 1]]) mx[j][i] = mx[j + (1 << (i - 1))][i - 1];  
  33.                 if(w[mi[j][i]] > w[mi[j + (1 << (i - 1))][i - 1]]) mi[j][i] = mi[j + (1 << (i - 1))][i - 1];  
  34.             }  
  35.         }  
  36. }  
  37. int rmqmin(int l,int r)  
  38. {  
  39.     int m = (int)(log((r - l + 1) * 1.0) / log(2.0));  
  40.     if(w[mi[l][m]] > w[mi[r - (1 << m) + 1][m]]) return mi[r - (1 << m) + 1][m];  
  41.     else return mi[l][m];  
  42. }  
  43. int rmqmax(int l,int r)  
  44. {  
  45.     int m = (int)(log((r - l + 1) * 1.0) / log(2.0));  
  46.     if(w[mx[l][m]] < w[mx[r - (1 << m) + 1][m]]) return mx[r - (1 << m) + 1][m];  
  47.     else return mx[l][m];  
  48. }  
  49. int main()  
  50. {  
  51.     scanf("%d%d", &n, &q);  
  52.     for(int i = 1; i <= n; i++) scanf("%d", &w[i]);  
  53.     rmqinit();  
  54.     int l, r;  
  55.     while(q--)  
  56.     {  
  57.         scanf("%d%d", &l, &r);  
  58.         printf("%d\n", rmqmax(l, r));  
  59.     }  
  60.     return 0;  
  61. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值