ST算法的基本原理百度一下就可以知道
RMQ(Range Minimum/Maximum Query)问题是求区间最值问题。可以写一个线段树,但是预处理和查询的复杂度都是O(logn)。这里有更牛的算法,就是ST算法,它可以做到O(nlogn)的预处理,O(1)!!!地回答每个询问。
来看一下ST算法是怎么实现的(以最大值为例):
首先是预处理,用一个DP解决。设a[i]是要求区间最值的数列,f[i,j]表示从第i个数起连续2^j个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7 ,f[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。f[1,2]=5,f[1,3]=8,f[2,0]=2,f[2,1]=4……从这里可以看出f[i,0]其实就等于a[i]。这样,Dp的状态、初值都已经有了,剩下的就是状态转移方程。我们把f[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。f[i,j]就是这两段的最大值中的最大值。于是我们得到了动规方程F[i,j]=max(F[i,j-1],F[i+2^(j-i),j-1]).
接下来是得出最值,也许你想不到计算出f[i,j]有什么用处,一般毛想想计算max还是要O(logn),甚至O(n)。但有一个很好的办法,做到了O(1)。还是分开来。如在上例中我们要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。扩展到一般情况,就是把区间[l,r]分成两个长度为2^n的区间(保证有f[i,j]对应)
- #include <iostream>
- #include <algorithm>
- #include <cstring>
- #include <string>
- #include <cstdio>
- #include <cmath>
- #include <queue>
- #include <map>
- #include <set>
- #define eps 1e-5
- #define MAXN 55555
- #define MAXM 11111
- #define INF 1000000000
- #define lch(x) x<<1
- #define rch(x) x<<1|1
- #define lson l,m,rt<<1
- #define rson m+1,r,rt<<1|1
- using namespace std;
- int mi[MAXN][17], mx[MAXN][17], w[MAXN];
- int n, q;
- void rmqinit()
- {
- for(int i = 1; i <= n; i++) mi[i][0] = mx[i][0] = w[i];
- int m = (int)(log(n * 1.0) / log(2.0));
- for(int i = 1; i <= m; i++)
- for(int j = 1; j <= n; j++)
- {
- mx[j][i] = mx[j][i - 1];
- if(j + (1 << (i - 1)) <= n) mx[j][i] = max(mx[j][i], mx[j + (1 << (i - 1))][i - 1]);
- mi[j][i] = mi[j][i - 1];
- if(j + (1 << (i - 1)) <= n) mi[j][i] = min(mi[j][i], mi[j + (1 << (i - 1))][i - 1]);
- }
- }
- int rmqmin(int l,int r)
- {
- int m = (int)(log((r - l + 1) * 1.0) / log(2.0));
- return min(mi[l][m] , mi[r - (1 << m) + 1][m]);
- }
- int rmqmax(int l,int r)
- {
- int m = (int)(log((r - l + 1) * 1.0) / log(2.0));
- return max(mx[l][m] , mx[r - (1 << m) + 1][m]);
- }
- int main()
- {
- scanf("%d%d", &n, &q);
- for(int i = 1; i <= n; i++) scanf("%d", &w[i]);
- rmqinit();
- int l, r;
- while(q--)
- {
- scanf("%d%d", &l, &r);
- printf("%d\n", rmqmax(l, r));
- }
- return 0;
- }
至于要返回下标呢
其实稍微改动一下就行了
- #include <iostream>
- #include <algorithm>
- #include <cstring>
- #include <string>
- #include <cstdio>
- #include <cmath>
- #include <queue>
- #include <map>
- #include <set>
- #define eps 1e-5
- #define MAXN 55555
- #define MAXM 11111
- #define INF 1000000000
- #define lch(x) x<<1
- #define rch(x) x<<1|1
- #define lson l,m,rt<<1
- #define rson m+1,r,rt<<1|1
- using namespace std;
- int mi[MAXN][17], mx[MAXN][17], w[MAXN];
- int n, q;
- void rmqinit()
- {
- for(int i = 1; i <= n; i++) mi[i][0] = mx[i][0] = i;
- int m = (int)(log(n * 1.0) / log(2.0));
- for(int i = 1; i <= m; i++)
- for(int j = 1; j <= n; j++)
- {
- mx[j][i] = mx[j][i - 1];
- mi[j][i] = mi[j][i - 1];
- if(j + (1 << (i - 1)) <= n)
- {
- if(w[mx[j][i]] < w[mx[j + (1 << (i - 1))][i - 1]]) mx[j][i] = mx[j + (1 << (i - 1))][i - 1];
- if(w[mi[j][i]] > w[mi[j + (1 << (i - 1))][i - 1]]) mi[j][i] = mi[j + (1 << (i - 1))][i - 1];
- }
- }
- }
- int rmqmin(int l,int r)
- {
- int m = (int)(log((r - l + 1) * 1.0) / log(2.0));
- if(w[mi[l][m]] > w[mi[r - (1 << m) + 1][m]]) return mi[r - (1 << m) + 1][m];
- else return mi[l][m];
- }
- int rmqmax(int l,int r)
- {
- int m = (int)(log((r - l + 1) * 1.0) / log(2.0));
- if(w[mx[l][m]] < w[mx[r - (1 << m) + 1][m]]) return mx[r - (1 << m) + 1][m];
- else return mx[l][m];
- }
- int main()
- {
- scanf("%d%d", &n, &q);
- for(int i = 1; i <= n; i++) scanf("%d", &w[i]);
- rmqinit();
- int l, r;
- while(q--)
- {
- scanf("%d%d", &l, &r);
- printf("%d\n", rmqmax(l, r));
- }
- return 0;
- }