排列组合基本公式

基本原理

1.加法原理 

集合S=s1∪s2∪s3..sm且si∩sj=∅(i<>j)
则s=s1+s2+s3..sm

2.乘法原理

   s(a,b)
   取a有p种,取b有q种
   s=p*q

公式

1.对于集合s(没有重复元素):

   从s中n个元素中取r个排列的方案数p(n,r)=n!/(n-r)!
   从s中n个元素中取r个组合的方案数c(n,r)=n!/(n-r)!r!
   定理:1.c(n,r)=c(n,n-r)
           2.c(n,0)+c(n,1)+c(n,2)...+c(n,n)=2^n
           从二进制角度理解
           有n个0
           00000000000
           c(n,r)就是从n个0中去r个0赋值为1
           显然每一种取法都对应一个二进制数,从0000000(n个)到1111111(n个),转换位十进制从0到2^n-1,一共2^n个数

2.对于多重集

如果S是一个多重集,那么S的一个r排列是S的r个元素的一个有序排放.如果S的元素总个数是n(包含计算重复),那么S的n排列也将称为S的全排列.例如,如果S={2•a,1•b,3•c}那么acbc,cbcc都是4排列.

可重复的排列

如果S是一个多重集,它有K个不同的类型元素,每一个元素都有无穷重复个数,那么,S的r排列个数为k^r
如果S是一个多重集,它有K个不同的类型元素,各元素分别为n1,n2,…,nk个,那么,S的r排列个数为
            n!/(n1!*n2!*…*nr!) 

 可重复的组合 

 设S是一个具有k种类型元素的多重集,每种元素均具有无限的重复数.则S的r-组合数为c(r+k-1,r).

<think>好的,用户想了解排列组合的计算公式和计算方法。首先需要明确排列和组合的基本概念。排列是考虑顺序的,而组合不考虑顺序。排列分为全排列和选排列,组合则是从n个元素中选出k个不考虑顺序的情况。 先从排列开始。全排列的公式应该是n的阶乘,也就是n!。比如排列3个元素的话,就是3×2×1=6种。而选排列的话,比如从n个元素中选k个排列,公式应该是n!/(n−k)!。例如P(5,2)=5×4=20。 然后是组合。组合的公式应该是排列除以k!,即C(n,k)=P(n,k)/k!,也就是n!/(k!(n−k)!)。比如C(5,2)=10。需要注意组合不考虑顺序,所以这里要除以k的阶乘来消除排列带来的重复。 可能还需要提到组合的扩展,比如有重复元素的排列或者组合,但用户的问题可能更关注基本公式。另外,是否要区分排列中的是否允许重复?比如元素是否可以重复选取。不过通常排列组合的基础公式是不重复的情况,所以可能需要说明这一点。 需要检查是否有常见的错误或需要注意的地方,比如阶乘的计算范围,当n和k较大时可能需要计算器或软件。或者是否0的阶乘是1的情况,这在公式中可能会影响结果。 最后,确保公式的格式正确,行内公式用$包裹,独立公式用$$。例如排列公式写成$A_n^k = \frac{n!}{(n-k)!}$,组合公式写成$C(n, k) = \frac{n!}{k!(n-k)!}$。 可能需要举例说明,比如具体的数值计算,帮助用户理解如何应用公式。例如,计算C(5,3)时,代入公式得到10种组合。 检查是否遗漏了排列组合的其他情况,比如环排列或者有重复元素的排列,但用户的问题可能只需要基础内容,所以可以暂不深入,除非搜索结果显示常见问题中包含这些。 最后生成相关问题时,需要考虑用户可能的后续问题,比如区别、实际应用、计算工具等,确保相关问题与原始问题相关且有逻辑联系。</think>排列组合计算公式分为排列数计算和组合数计算两类。排列数记作$A_n^k$或$P(n,k)$,组合数记作$C(n,k)$或$\binom{n}{k}$。 **排列数公式** 当从$n$个不同元素中取出$k$个元素进行有序排列时: $$A_n^k = \frac{n!}{(n-k)!}$$ 例如计算$P(5,2)$时: $5! = 120$,$(5-2)! = 6$,则$P(5,2) = 120/6 = 20$。 **组合数公式** 当从$n$个不同元素中取出$k$个元素不考虑顺序时: $$C(n,k) = \frac{n!}{k!(n-k)!}$$ 例如计算$C(5,3)$时: $5! = 120$,$3! \cdot 2! = 6 \times 2 = 12$,则$C(5,3) = 120/12 = 10$。 **特殊情形处理** - 当$k=0$时,$C(n,0)=1$ - 当$k=n$时,$C(n,n)=1$ - 组合数对称性:$C(n,k)=C(n,n-k)$ ```python # 组合数计算函数示例 from math import factorial def combination(n, k): return factorial(n) // (factorial(k) * factorial(n - k)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值