- 博客(45)
- 收藏
- 关注
原创 【AI】集装箱损伤检测与识别实战应用_YOLOv26模型详解与实现_1
集装箱损伤检测数据集与YOLOv26模型应用 摘要:Damaged Container OJN数据集是一个包含903张预处理图像(640x640像素)的集装箱损伤检测数据集,采用YOLOv8格式标注6类损伤。数据集通过随机旋转增强多样性,覆盖多种港口场景和损伤类型。文章详细介绍了基于YOLOv26模型的检测方法,该模型采用端到端无NMS设计,移除DFL模块并使用MuSGD优化器,显著提升检测效率。实战部分包含数据准备、模型训练流程及评估指标,为集装箱自动化检测提供完整解决方案。
2026-01-26 15:15:25
593
原创 【目标检测】YOLOv26:基于改进算法的乌鸦识别系统详解
摘要:本文介绍了一种基于改进YOLOv26算法的乌鸦智能识别系统。该系统针对乌鸦检测任务优化了网络架构,包括骨干网络引入注意力机制、设计专用检测头结构,并提出自适应多尺度训练策略。实验使用包含10,000张标注图像的乌鸦数据集,结果显示改进模型达到95.6%的mAP,比原YOLOv6提升8.7个百分点。系统支持服务器、边缘设备和移动端部署,可应用于生态监测和城市害鸟防控等领域。该研究为鸟类识别提供了高效解决方案,在保持32FPS实时性的同时显著提升了检测精度。
2026-01-26 11:54:28
568
原创 工作服穿着检测系统基于YOLOv26的12类商务休闲服装识别与分类模型训练与评估
本文介绍了一种基于YOLOv26深度学习算法的工作服穿着检测系统,能够自动识别12类商务休闲服装。系统采用模块化设计,包含数据采集、预处理、检测、后处理和可视化等模块。通过构建包含6000张标注图像的数据集,并采用多任务损失函数和优化训练策略,模型在测试集上实现了93.5%的平均mAP@0.5精度。特别在牛仔裤和运动鞋识别上表现优异(96-97%),而连衣裙和半身裙识别相对较弱(90-91%)。系统支持图片和视频检测,具备实时处理能力,可满足企业工作服合规性检查需求。
2026-01-26 10:20:36
737
原创 YOLOv26_玉米棒深度检测与识别模型详解
YOLOv26模型在玉米棒深度检测与识别任务中展现出卓越的性能,其创新的架构设计和优化的训练策略为农业智能化提供了有力支持。通过端到端的检测流程和高效的推理能力,该模型能够在复杂农田环境中实现精准的玉米棒检测,为农业生产自动化提供了技术保障。未来,我们计划进一步优化模型以适应更多农业检测任务,如玉米病害识别、玉米穗计数等。同时,结合无人机和卫星遥感技术,YOLOv26模型有望在更大规模的农业监测中发挥重要作用,推动智慧农业的发展。
2026-01-25 19:25:50
987
原创 YOLOv26_建筑工地工人个人防护装备检测与识别_安全帽_安全背心检测技术详解_yolov26算法实现与性能分析
本文介绍了基于YOLOv26算法的建筑工地工人个人防护装备(PPE)检测技术。针对传统人工检查效率低、主观性强等问题,提出采用计算机视觉实现自动化检测。YOLOv26作为最新目标检测算法,具有端到端无NMS推理、改进损失函数和MuSGD优化器等创新点,显著提升了检测性能。文章详细阐述了数据集构建、模型训练与优化过程,并提供了性能评估指标,显示YOLOv26s在精度和效率间取得良好平衡,适合边缘设备部署。该技术可实现7×24小时实时监控,有效提升工地安全管理水平。
2026-01-25 17:54:10
767
原创 椰子品种智能识别与分类_YOLOv26模型详解_训练验证与应用
本文介绍了基于YOLOv26模型的椰子品种智能识别系统。该模型通过端到端无NMS推理、改进的损失函数等创新技术,显著提升了识别精度和速度。研究团队构建了包含5类2500张椰子图像的数据集,通过数据增强扩展到10000张。模型训练采用512x512输入尺寸,优化锚框配置,使用MuSGD优化器进行微调。该系统实现了高效准确的椰子品种识别,为农业智能化管理提供了技术支持。
2026-01-25 16:14:14
668
原创 基于Yolov3-tiny的液晶显示面板自动断裂检测系统实现
本文提出了一种基于改进YOLOv3-tiny算法的液晶显示面板自动断裂检测系统。针对传统人工检测效率低的问题,该系统通过优化轻量级骨干网络和多尺度检测机制,在保持高精度的同时提升检测速度。前端设计直观易用的交互界面,后端采用深度可分离卷积和通道注意力机制增强特征提取能力。实验结果显示,改进算法mAP@0.5达到0.914,支持30fps实时检测,为液晶面板生产线提供了高效可靠的自动化检测解决方案。
2026-01-21 12:01:47
568
原创 【医疗影像检测】VFNet模型在医疗器械目标检测中的应用与优化
摘要 本文研究了VFNet模型在医疗器械目标检测中的应用与优化。医疗器械检测面临尺度变化大、对比度低等挑战,传统算法难以满足需求。VFNet通过可变感受野设计、多尺度特征融合等创新,显著提升了检测性能。实验表明,改进后的VFNet在mAP指标上提升5.3%,小目标检测效果尤为突出。模型已成功应用于临床诊断和质量控制,将检测效率提高40%。文章还探讨了模型压缩、部署优化等实际应用问题,并展望了3D医疗影像检测等未来方向。相关代码和数据集已开源,为医疗AI研究提供实用资源。
2026-01-21 10:24:33
994
原创 LCD屏幕表面缺陷检测系统凹陷识别与定位技术分析
本文分析了LCD屏幕表面凹陷缺陷检测系统的关键技术,包括系统架构、特征分析和算法实现。系统采用模块化设计,结合传统图像处理与深度学习(改进YOLOv8模型)方法,实现对凹陷缺陷的高精度识别与定位。凹陷特征表现为亮度、形状和纹理变化,易受光照影响。实验表明,改进YOLO模型准确率达94.5%,定位误差±1.5px,优于传统方法。实际应用中显著提升了缺陷检出率并降低人工审核工作量。未来将优化小缺陷检测能力并探索3D视觉技术应用。
2026-01-18 23:15:17
1035
原创 【蜂巢健康监测】基于YOLO的蜂群病虫害识别系统
从YOLOv1到YOLOv13,目标检测技术走过了不平凡的历程。每一次创新都凝聚着研究者的智慧和汗水,每一次突破都推动着整个领域向前发展。作为从业者,我们既要学习这些经典模型的创新思想,也要勇于探索新的技术方向。希望这篇文章能帮助你更好地理解目标检测技术的发展脉络,也希望你在实践中能够选择最适合自己需求的模型。记住,没有最好的模型,只有最合适的模型。选择模型时,一定要结合具体的应用场景和需求,而不是盲目追求最新或最复杂的架构。
2026-01-18 19:58:01
715
原创 基于YOLOv8的高速公路交通设施与标志识别系统实现
本文提出了一种基于YOLOv8的高速公路交通设施与标志识别系统。系统采用模块化设计,包括数据采集、模型训练、检测识别和结果展示四个部分。通过构建包含10,000张高速公路图像的数据集,涵盖多种交通标志类型,并采用YOLOv8模型进行训练优化。实验结果表明,该系统能够实时准确地识别各类交通设施,识别率达到95%以上,推理速度满足30FPS的实时性要求。系统还通过TensorRT加速优化,显著提升了部署性能。该系统可应用于智能交通监控和自动驾驶等领域,具有广阔的应用前景。
2026-01-18 16:46:37
858
原创 头发类型与帽子检测识别_yolov8-ASF_改进方案
本文提出了一种基于改进YOLOv8模型的头发类型与帽子检测方法。通过结合ASF注意力机制,增强了模型对头发纹理和帽子轮廓的特征提取能力。构建了包含10,000张图像的专业数据集,采用半自动标注和多种数据增强策略提升模型泛化性。实验结果表明,该方法在复杂场景下实现了高精度检测,特别是在低光照和遮挡情况下表现优异。改进后的模型架构和训练策略使检测准确率显著提升,为智能安防、虚拟试衣等应用提供了可靠的技术支持。
2026-01-09 17:14:57
937
原创 【技术实践】基于YOLO11-Seg与DySnakeConv的14种杂草智能识别系统
本文提出了一种基于改进YOLO11-Seg模型和DySnakeConv动态卷积的14种杂草智能识别系统。通过引入动态蛇形卷积、优化多尺度特征融合和增强注意力机制,显著提升了模型在复杂农田环境下的识别性能。实验结果表明,改进模型在mAP指标上达到0.867,较标准YOLOv11提升8.5%,能有效处理小尺寸杂草和复杂背景干扰。该系统支持多种部署方案,为精准农业除草提供了可靠的技术支持。
2026-01-09 16:36:26
890
原创 水果图像识别与分类:基于CondInst模型的高精度实例分割实践
本文介绍了基于CondInst模型的水果图像实例分割实践。作者首先将LabelMe标注的JSON格式数据集转换为COCO格式,详细展示了转换代码。随后介绍了CondInst模型的核心原理,包括其条件推理机制如何提高计算效率。文章还分享了训练过程,包括数据准备、增强方法和实际应用效果。最终实现了对苹果、香蕉、橙子等多种水果的高精度识别与分割,为水果自动分类提供了有效的技术方案。
2026-01-06 13:24:35
1014
原创 交通手势识别_YOLO11实例分割实现八种手势检测与识别_DWR改进
本文提出了一种基于改进YOLO11和动态加权融合(DWR)的交通手势识别系统。通过构建包含8种手势、共10950张图像的数据集,并采用多尺度数据增强策略,有效提升了模型性能。在YOLO11架构基础上引入DWR机制,实现了自适应特征融合,使mAP提升3.7个百分点。实验结果显示,系统在测试集上平均F1-Score达0.931,推理速度42 FPS。通过OpenVINO部署优化后,推理速度进一步提升33%至56 FPS。该系统为智能交通管理提供了高效精准的手势识别解决方案。
2026-01-02 11:26:30
1035
原创 便携式发电机检测与识别_YOLO13-C3k2-DeepDBB改进模型研究_1
本文提出了一种改进的YOLO13-C3k2-DeepDBB模型用于便携式发电机故障检测。通过引入C3k2模块和DeepDBB结构,模型在保持高效特征提取能力的同时降低了计算复杂度。实验结果表明,改进模型平均检测精度达96.8%,较原始YOLOv13提升8.7%,参数量减少23.5%。基于该模型开发的便携式检测系统可实现0.25秒/帧的实时检测,误报率低于3%。该系统为发电机预防性维护提供了可靠的技术支持,显著提升了故障检测效率和准确性。
2026-01-02 08:39:38
737
原创 齿轮端面缺陷检测与分类_DINO-4Scale实现与训练_1
本文介绍了一种基于DINO-4Scale模型的齿轮端面缺陷检测方法。该方法利用Vision Transformer架构和自蒸馏学习机制,通过多尺度特征融合有效提升了检测精度。实验表明,模型在4125张齿轮图像数据集上达到94.2%的准确率,相比基础ViT提升6.9%。该系统已成功应用于工业生产线,检测效率提高5倍以上。该研究为工业质检提供了一种高效可靠的自动化解决方案,显著降低了人工检测成本。
2026-01-01 21:09:08
626
原创 天然气表计检测与状态评估_YOLOv10n-ContextGuideFPN模型详解
本文提出了一种基于YOLOv10n-ContextGuideFPN模型的天然气表计智能检测系统。该系统通过创新的上下文引导特征金字塔网络(ContextGuideFPN),显著提升了小目标检测精度,mAP达到81.5%。模型采用多尺度训练策略和动态上下文引导机制,在保持实时性能(12.3ms/帧)的同时,相比传统YOLO模型提升小目标检测精度7.8%。该系统已成功应用于燃气巡检和智能抄表场景,检测效率提升80%,错误率降低90%,实现了燃气表计的自动化识别与状态评估。
2026-01-01 20:34:30
985
原创 【论文实践】基于MS-RCNN的挖掘机铲斗状态识别与估计:从模型训练到实际应用
本文提出了一种基于MS-RCNN的挖掘机铲斗状态识别系统,采用模块化设计实现模型训练与管理。系统包含可视化训练监控、多线程训练架构和数据集验证等核心功能,支持PySide6框架下的组件化扩展。通过LabelComponent、ChartComponent等可视化组件,研究人员可以直观监控训练过程和结果。多线程设计确保大型数据集训练时的系统响应性,而严格的数据集验证机制保障了模型训练质量。该系统特别针对挖掘机复杂工况下的铲斗状态识别需求,通过组件化架构实现了高效稳定的模型训练流程,为工程机械智能化提供了可靠的
2025-12-30 09:20:14
595
原创 基于YOLOv8-FasterNet的液压阀块端盖表面缺陷检测与分类
本文提出了一种基于YOLOv8-FasterNet的液压阀块端盖表面缺陷检测与分类方法。系统采用模块化设计,结合YOLOv8的目标检测能力和FasterNet的高效特征提取,实现了高精度实时检测。通过数据增强、两阶段训练策略和复合损失函数优化模型性能,最终达到30FPS处理速度,mAP@0.5超过95%。系统采用微服务架构,提供直观界面,满足工业质检需求。实验结果表明该方法能有效识别划痕、凹陷、气泡等常见缺陷,为液压阀块质量控制提供了可靠解决方案。
2025-12-30 08:45:18
634
原创 基于改进Faster R-CNN的鸭蛋质量检测与分类系统_x101-32x8d_fpn_ms-3x_coco模型详解
传统的Faster R-CNN模型虽然在目标检测任务中表现出色,但在处理小目标和多尺度目标时仍存在一些局限性。引入ResNeXt-101-32x8d作为骨干网络,增强特征提取能力改进特征金字塔网络(FPN),添加多尺度融合机制优化RPN网络,提高候选区域生成质量引入注意力机制,增强对缺陷特征的敏感度这些改进使得模型在鸭蛋表面缺陷(如裂纹、污渍、斑点等)检测方面取得了显著提升。👏。
2025-12-29 17:27:19
1032
原创 【深度学习】基于Faster R-CNN的榴莲成熟度分类与检测模型详解_2
本文提出了一种基于Faster R-CNN的榴莲成熟度检测模型。通过引入特征金字塔网络(FPN)增强多尺度检测能力,结合ResNet50/101作为基础网络,实现了对榴莲成熟度的高精度分类。实验结果表明,该模型在自建数据集上达到0.871 mAP,F1分数0.871,优于基准方法。消融实验验证了FPN、注意力机制和数据增强的有效性。该研究为农产品质量检测提供了实用解决方案,具有较高的应用价值。
2025-12-29 16:53:19
877
原创 柑橘果实表面病害与虫害智能检测与分类 YOLO11-Seg-GhostHGNetV2实现
【摘要】本研究提出基于YOLOv11-Seg-GhostHGNetV2的柑橘病害智能检测方法,针对传统人工检测效率低、准确率不足的问题,通过创新性改进实现高效识别。核心贡献包括:1)采用GhostHGNetV2轻量化骨干网络,通过Ghost模块减少42.3%参数量;2)设计多尺度特征融合模块,结合注意力机制增强对小目标病害的检测能力;3)在保持高精度的同时降低38.6%计算量。实验表明该方法能有效识别黄龙病、炭疽病等多种病害,为智慧农业提供实时、精准的病害检测解决方案。
2025-12-22 15:19:33
1087
原创 工业机器人类型识别与检测——基于YOLO11-C3k2-PFDConv的六种机器人自动识别系统详解_1
本文提出了一种基于改进YOLO11架构的工业机器人自动识别系统。该系统采用YOLO11-C3k2-PFDConv模型,结合多尺度C3k2模块和金字塔特征检测卷积(PFDConv),能够高效识别IRB、Kuka、Panda等六种常见工业机器人。系统包含数据采集、模型训练、推理识别和可视化四个模块,通过3000张工业机器人图像数据集进行训练。创新性地引入并行卷积分支和复合损失函数,提高了模型对多尺度目标的识别能力。实验结果表明,该系统在工业场景下具有较高的识别准确率和鲁棒性,为智能制造提供了可靠的技术支持。
2025-12-22 14:35:51
1037
原创 农业机械部件堵塞检测_yolo11-C3k2-RVB模型实现与测试
本文提出了一种基于YOLO11-C3k2-RVB模型的农业机械部件堵塞检测方法。针对传统人工检测效率低、安全隐患等问题,该模型通过引入C3k2模块增强特征多样性,结合RVB注意力机制抑制背景干扰。实验采用10,000张农业机械图像数据集,通过数据增强和迁移学习策略训练模型。结果表明,该方法在复杂环境下检测准确率显著提升,特别是C3k2模块使mAP提升2.3%,RVB机制在低光照条件下表现优异。该方案为农业机械自动化检测提供了有效解决方案,具有重要的应用价值。
2025-12-18 15:44:37
1085
原创 海洋微生物显微图像分类与检测:Yolo13-Seg-Faster模型实现14种物种自动识别
本文提出改进的YOLOV13-Seg-Faster模型用于海洋微生物检测。通过引入CBAM注意力机制增强特征提取能力,采用BiFPN网络优化多尺度特征融合,使用CIoU损失函数提升定位精度,并添加分割分支实现精确分割。实验表明,改进模型mAP@0.5达0.832,较原始YOLOV13提升0.090,FPS保持42帧/秒。消融实验验证了各改进模块的有效性,模型在复杂背景下对小目标检测性能显著提升。
2025-12-16 09:31:39
1038
原创 基于YOLO11的汽车车灯状态识别与分类_C3k2-wConv改进_1
本文介绍了基于YOLO11的汽车车灯状态识别系统,重点提出C3k2-wConv改进方法。该方法结合C3k模块和wConv卷积优势,增强了对车灯特征的提取能力。通过构建包含16800张图像的数据集,采用多阶段训练策略,模型在精确率、召回率等指标上较基线提升4%以上,推理速度达45ms/帧。最终部署到边缘设备实现60FPS实时识别,准确率超90%,有效解决了车灯识别中的小目标检测和复杂光照条件等技术挑战。
2025-12-16 08:54:36
905
原创 YOLOv11香烟包装印章智能识别系统:从原理到实现完整指南
This repository contains an automated system for detecting stamps on cigarette packages. The project focuses on image processing and pattern recognition to identify regulatory stamps on tobacco product packaging. The solution is designed to help verify pro
2025-12-15 19:05:06
172
原创 排球动作识别与检测:基于YOLO11-C2PSA-CGLU的攻击、拦网、防守、发球、传球和排球检测六类动作自动识别与定位方法研究
本文提出了一种基于改进YOLO11模型的排球动作识别方法YOLO11-C2PSA-CGLU,实现了对攻击、拦网、防守、发球、传球和排球检测六类动作的自动识别与定位。研究通过构建包含5000分钟比赛视频的数据集,并引入C2PSA-CGLU注意力机制增强特征表达能力。实验表明,该方法在mAP@0.5指标上达到89.7%,较基础YOLO11提升7.4%,且通过量化技术将推理速度提升至8.3ms,模型大小缩减至18.7MB,为排球比赛分析和训练辅助提供了有效的技术支持。
2025-12-12 20:01:40
1079
原创 yolo13-C3k2-PPA:超市货架缺货检测的创新方案
本文详细介绍了YOLO13-C3k2-PPA这一创新方案,它在YOLOv13的基础上,通过改进的C3k2模块和PPA注意力机制,实现了高效准确的超市货架缺货检测。实验结果表明,我们的模型在保持较高推理速度的同时,显著提升了检测精度,特别是在处理小目标和复杂场景下表现出色。通过边缘计算+云端的部署架构,YOLO13-C3k2-PPA已经可以应用于实际超市场景,帮助零售商提高库存管理效率,减少缺货损失。未来,我们将继续优化模型性能,探索多模态融合、3D检测等新技术,为零售行业提供更加智能的解决方案。
2025-12-08 10:48:36
1055
原创 基于YOLOv8-GFPN的消防车目标检测算法实现与优化_1
本文提出了一种基于YOLOv8-GFPN的消防车目标检测算法,通过改进特征金字塔网络和优化损失函数,显著提升了检测精度。实验结果表明,该算法在自建数据集上达到0.853 mAP,相比基准模型提升3-6%,同时保持152 FPS的实时性能。研究还探讨了量化压缩和知识蒸馏等优化策略,使模型更适合边缘部署。该系统为智能交通管理和应急救援提供了高效可靠的解决方案,特别在远距离小目标检测方面表现突出。
2025-12-04 11:52:57
918
原创 基于YOLOv8与多骨干网络的油菜花蕾与腋生叶检测识别系统_DAF
本文提出了一种基于YOLOv8与多骨干网络的油菜花蕾与腋生叶检测系统(DAF)。针对传统人工监测效率低的问题,该系统融合CSPDarknet、ResNet和MobileNet三种骨干网络,引入CBAM注意力机制,并改进检测头结构。实验显示,DAF在自建数据集上mAP达0.893,显著优于主流模型。系统已部署于边缘设备,实现田间实时检测,识别精度超89%,为油菜生长监测提供了智能化解决方案。未来可进一步优化模型轻量化以适应更多农业场景。
2025-12-04 11:04:12
600
原创 水稻害虫智能识别----基于YOLO11与GDFPN网络的检测系统实现与优化
本文提出了一种基于YOLO11与GDFPN网络的水稻害虫智能检测系统。针对传统检测方法效率低、准确性不足的问题,该系统采用改进的双向特征金字塔网络(GDFPN)增强多尺度特征融合能力,并结合Focal Loss和CIoU Loss优化模型性能。研究构建了包含10类害虫、12000张图像的数据集,通过数据增强和注意力机制提升模型泛化能力。实验结果表明,该方法在复杂田间环境下能有效识别小目标害虫,为精准农业提供技术支持,对减少农药使用、提高水稻产量具有重要意义。
2025-12-02 13:06:41
814
原创 钛铁矿磁铁矿钛磁铁矿矿物标本YOLO11-seg-HGNetV2自动识别与分类_1
本文提出了一种基于YOLO11-seg-HGNetV2模型的矿物自动识别系统,用于钛铁矿、磁铁矿和钛磁铁矿的分类与定位。系统采用模块化设计,包含数据预处理、模型训练、推理和可视化模块。通过2000张专家标注的矿物图像数据集,结合数据增强和迁移学习策略,模型实现了94.6%的平均分类准确率和0.87的平均分割IoU。实验结果表明,该系统能有效提升矿物识别的自动化水平,为地质研究提供高效解决方案。
2025-12-02 12:27:49
556
原创 【AI智能检测】基于YOLOv8-BiFPN-SDI的食物过敏原识别系统,精准检测保障饮食安全,技术详解与应用案例分享
基于YOLOv8-BiFPN-SDI的食物过敏原识别系统技术摘要 本研究提出了一种创新的食物过敏原检测系统,采用YOLOv8-BiFPN-SDI架构实现高精度识别。系统核心创新包括: BiFPN特征融合:通过双向加权特征金字塔网络增强多尺度特征提取能力,数学表达为加权特征融合公式 SDI动态检测:自适应调整检测尺度,针对不同大小过敏原优化检测策略 Allergen30数据集:包含6,000+图像,覆盖30类常见过敏原,经严格预处理和增强 技术优势: 识别准确率达97.3%,超越基准方法5.2% 推理速度提升
2025-11-28 18:10:06
896
原创 龋齿严重程度检测 _ 基于DETR-R101模型的龋齿严重程度检测系统
本文提出了一种基于改进DETR-R101模型的龋齿严重程度智能检测系统。该系统通过优化Transformer架构和多尺度特征融合,实现了对口腔X光片中龋齿病灶的自动识别与分级。研究构建了包含5000张标注X光片的数据集,采用Focal Loss和难样本挖掘策略解决类别不平衡问题。实验结果表明,该系统在龋齿检测任务中达到92.3%的精确率和89.7%的召回率,能够有效辅助口腔医生进行客观、高效的龋齿诊断。该系统根据龋齿侵犯深度将病变分为轻、中、重三级,为临床治疗决策提供了量化依据。
2025-11-28 17:40:05
826
原创 基于YOLOv8-P6的水稻病害检测与分类系统实现
本文提出了一种基于改进YOLOv8-P6的水稻病害检测与分类系统。通过在标准YOLOv8-P6模型中引入多尺度检测头和分割头,结合Focal Loss解决类别不平衡问题,显著提升了水稻病害检测精度。实验结果表明,该方法在mAP@0.5指标上达到0.873,比基线模型YOLOv7高出3.8个百分点。系统实现了对5种常见水稻病害的准确检测和分类,同时保持了28FPS的实时处理速度,为农业生产中的病害早期识别提供了有效解决方案。
2025-11-24 11:11:55
116
原创 【深度学习实战】yolov10n-SPDConv实现糖尿病视网膜病变分级与病变区域检测_1
本文介绍了基于YOLOv10n-SPDConv架构的糖尿病视网膜病变自动检测与分级系统。项目采用结构化数据集组织方式,包含标注文件、脚本和标签定义。通过Python脚本实现了数据集划分(90%训练集、10%验证集)、文件分类整理以及LabelMe格式到COCO格式的转换。系统能够检测视网膜图像中的病变区域并对其进行A-E五级严重程度分类,为医生提供辅助诊断支持,有助于糖尿病视网膜病变的早期发现和干预。
2025-11-24 10:32:24
68
原创 实战基于YOLO11-Fasternet-BiFPN的金属切削刀具角度识别与分类系统
金属切削刀具角度识别与分类系统摘要 本文提出了一种基于YOLO11-Fasternet-BiFPN架构的金属切削刀具角度自动识别系统。针对传统人工测量效率低、误差大的问题,该系统采用深度学习技术实现高精度实时检测。通过构建包含5000张刀具图像的数据集,结合Fasternet轻量化网络和BiFPN特征融合技术,显著提升了检测性能。实验结果表明,改进后的模型mAP达到92.8%,FPS提升至158,优于传统YOLO11模型。该系统已成功应用于工业生产线,检测效率提升10倍以上,为智能制造提供了可靠的刀具质量检
2025-11-22 10:26:15
72
原创 基于Faster-RCNN和HRNetV2的食品瓶罐包装缺陷检测与识别
摘要 本研究提出了一种基于Faster-RCNN和HRNetV2的食品瓶罐包装缺陷检测方法,解决了传统人工检测效率低、主观性强的问题。系统采用Faster-RCNN进行目标检测,结合HRNetV2的高分辨率特征提取能力,构建端到端的检测模型。研究构建了包含5类缺陷(瓶身划痕、瓶盖变形等)的专业数据集,并通过数据增强提升模型泛化能力。实验结果表明,该方法在测试集上达到92.5%的mAP,相比传统算法显著提升,特别是小目标检测准确率提高12个百分点。该系统可应用于食品包装质量检测等工业场景,具有较高的实用价值。
2025-11-22 09:51:28
42
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅