哈希表(上)
1.有效的字母异位词
class Solution {
public boolean isAnagram(String s, String t) {
int[] hash = new int[26];
//字符串s放入hash中
for(int i=0;i<s.length();i++){
hash[s.charAt(i)-'a']++;
}
//hash减去字符串t出现的字符
for(int i=0;i<t.length();i++){
hash[t.charAt(i)-'a']--;
}
//判断是否完全覆盖
for(int i=0;i<hash.length;i++){
if(hash[i]!=0){
return false;
}
}
return true;
}
}
哈希表中最基础的题之一,就是把字符串的每个字符存在哈希表中(此处以数组代替),判断另一个字符串中出行的字符数是否与其相等。
2.两个数组的交集
class Solution {
public int[] intersection(int[] nums1, int[] nums2) {
HashSet<Integer> hs = new HashSet<>();
for(int i:nums1){
hs.add(i);
}
HashSet<Integer> hs_res = new HashSet<>();
for(int i:nums2){
if(hs.contains(i)){
hs_res.add(i);
}
}
int[] res = new int[hs_res.size()];
int j=0;
for(int i:hs_res){
res[j++] = i;
}
return res;
}
}
哈希表中最基础的题之一
3.快乐数
class Solution {
public boolean isHappy(int n) {
HashSet<Integer> hs = new HashSet<>();
int tem_sum = get_sum(n);
while(true){
if(hs.contains(tem_sum)){
return false;
}else if(tem_sum==1){
return true;
}else{
hs.add(tem_sum);
tem_sum = get_sum(tem_sum);
}
}
}
public int get_sum(int n){
int sum=0;
while(n!=0){
sum += (n%10) * (n%10);
n = n/10;
}
return sum;
}
}
这个题最重要的是不要忽略循环的情况,即这个数求和过程中又得到了这个数。出了上面hash的算法,官方还提供了一种快慢指针的算法。
一直去求下一位数的结果有三种:
1. 得到1
2. 陷入循环
3. 数值无限大(这一种其实不存在)
上述表格展示了当前位数最大数值以及下一位数,如1位数时,最大的是9,下一位数就是99=81。所以1位数的时候,只会在81以下循环或者等于1,不会出行无限大的情况,其他多位数情况类似。即在Digits=k<=Largest的范围,其各位求和平方的范围为NextNext。
class Solution {
private int getNext(int n) {
int totalSum = 0;
while (n > 0) {
int d = n % 10;
n = n / 10;
totalSum += d * d;
}
return totalSum;
}
public boolean isHappy(int n) {
// 检查链表有环的方法 快慢指针法
int slow = n;
int fast = getNext(n);
while(true){
if(fast==1){
return true;
}else if(slow==fast){
return false;
}else{
slow = getNext(slow);
fast = getNext(getNext(fast));
}
}
}
}
快慢指针的方法,我们是以链表找环的方式来判断,fast每次跳两个节点,slow跳一个,这样去判断,详情见链表篇 环形链表Ⅱ。
4.四数相加Ⅱ
class Solution {
public int fourSumCount(int[] nums1, int[] nums2, int[] nums3, int[] nums4) {
HashMap<Integer,Integer> hm1 = new HashMap<>();
for(int i=0;i<nums1.length;i++){
for(int j=0;j<nums2.length;j++){
hm1.put(-(nums1[i]+nums2[j]),1+hm1.getOrDefault((-nums1[i]-nums2[j]),0));
}
}
int res = 0;
for(int i=0;i<nums3.length;i++){
for(int j=0;j<nums4.length;j++){
if(hm1.containsKey(nums3[i]+nums4[j])){
res+=hm1.get(nums3[i]+nums4[j]);
}
}
}
return res;
}
}
遍历nums1和nums2的组合,将其和的差(key)放入hashmap中,value为其和出现的次数。再遍历nums1和nums2的组合,若hashmap中存在一个组合,则将value的值(出行的次数)加到结果中去,这里需要注意的是数组的序列有顺序,不是说你nums3[1]+nums4[4]==2出行在了hashmap中,你将次数累加到了结果中,后面就不考虑key=2这个情况。因为遍历的组合每一次都是不同的,万一后面出现nums[3]++nums4[2]==2,也要累加key=2出行的次数。