矩阵快速幂和普通的快速幂差不多,注意单位矩阵E是对角线都是1、其他是零的矩阵
#include<bits/stdc++.h>
using namespace std;
const int maxn = 100 + 10;
int MOD;
struct Mat
{
int a[maxn][maxn];
int n, m;//n为行数,m为列数
Mat(int n, int m):n(n), m(m)
{
memset(a, 0, sizeof(a));
}
void init()
{
for(int i = 0; i < n; i++)a[i][i] = 1;//初始化成单位矩阵
}
void output()
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < m; j++)
{
cout<<a[i][j]<<" ";
}
cout<<endl;
}
}
};
Mat mul(Mat a, Mat b)//矩阵乘法
{
Mat tmp(a.n, b.m);//矩阵乘法结果矩阵行数为a的行数,列数为b的列数
for(int i = 0; i < a.n; i++)
{
for(int j = 0; j < b.m; j++)
{
for(int k = 0; k < a.m; k++)//a.m == b.n(乘法的前提条件)
{
tmp.a[i][j] += (a.a[i][k] * b.a[k][j] % MOD);
tmp.a[i][j] %= MOD;
}
}
}
return tmp;
}
Mat pow(Mat a, int n)
{
Mat tmp(a.n, a.m);
tmp.init();
while(n)
{
if(n & 1)tmp = mul(tmp, a);
n /= 2;
a = mul(a, a);
}
return tmp;
}