矩阵快速幂模板

矩阵快速幂和普通的快速幂差不多,注意单位矩阵E是对角线都是1、其他是零的矩阵
#include<bits/stdc++.h>
using namespace std;
const int maxn = 100 + 10;
int MOD;
struct Mat
{
    int a[maxn][maxn];
    int n, m;//n为行数,m为列数
    Mat(int n, int m):n(n), m(m)
    {
        memset(a, 0, sizeof(a));
    }
    void init()
    {
        for(int i = 0; i < n; i++)a[i][i] = 1;//初始化成单位矩阵
    }
    void output()
    {
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < m; j++)
            {
                cout<<a[i][j]<<" ";
            }
            cout<<endl;
        }
    }
};
Mat mul(Mat a, Mat b)//矩阵乘法
{
    Mat tmp(a.n, b.m);//矩阵乘法结果矩阵行数为a的行数,列数为b的列数
    for(int i = 0; i < a.n; i++)
    {
        for(int j = 0; j < b.m; j++)
        {
            for(int k = 0; k < a.m; k++)//a.m == b.n(乘法的前提条件)
            {
                tmp.a[i][j] += (a.a[i][k] * b.a[k][j] % MOD);
                tmp.a[i][j] %= MOD;
            }
        }
    }
    return tmp;
}
Mat pow(Mat a, int n)
{
    Mat tmp(a.n, a.m);
    tmp.init();
    while(n)
    {
        if(n & 1)tmp = mul(tmp, a);
        n /= 2;
        a = mul(a, a);
    }
    return tmp;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值