MixCSE:Unsupervised Sentence Representation via Contrastive Learning with MixingNegatives

本文介绍了一种基于GitHub开源项目MixCSE_AAAI2022的无监督句子表示学习方法,通过对比学习和混合负样本策略,提高了模型在多个语料库上的STS和MR等任务上的性能。研究显示,这种方法在STS12平均得分上达到76.48%,在多个NLP基准上展示了优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

 代码地址:GitHub - BDBC-KG-NLP/MixCSE_AAAI2022: Code for AAAI 2022 paper Unsupervised Sentence Representation via Contrastive Learning with Mixing Negatives

------ test ------
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
| STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness |  Avg. |
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
| 69.87 | 82.36 | 74.48 | 82.20 | 78.21 |    77.84     |      70.43      | 76.48 |
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
+-------+-------+-------+-------+-------+-------+-------+-------+
|   MR  |   CR  |  SUBJ |  MPQA |  SST2 |  TREC |  MRPC |  Avg. |
+-------+-------+-------+-------+-------+-------+-------+-------+
| 80.33 | 85.88 | 94.91 | 88.95 | 84.52 | 83.47 | 76.15 | 84.89 |
+-------+-------+-------+-------+-------+-------+-------+-------+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值