庞果英雄会——覆盖数字
给定整数区间[a,b]和整数区间[x,y],你可以使用任意多次a,b之间的整数做加法,可以凑出多少个[x,y]区间内的整数? 输入 a,b,x,y,其中1<= a < b <= 1000000000, 1 <= x < y <= 1000000000。 输出: 用[a,b]内的整数做任意多次加法,可以得到多少个[x,y]内的整数。 例如a = 8, b = 10, x = 3 , y = 20 我们可以得到 [3..20]之间的整数 8, 9, 10, 16 ( 8 + 8), 17(8 + 9), 18(9 + 9), 19(9 + 10), 20(10 + 10),因此输出8。 问:2+3=5 1+4=5 这算1个还是2个? 答:算1次 问你能覆盖多少个不同的数字 [x,y]全覆盖住得话 就是y - x + 1。
解题过程:
不断地叠加原始区间[a,b]:
left = left + a;
right = right + b;
如果right > y或left > y,这说明已经超出区间[x, y]的范围了,结束计算。
重点是注意区间覆盖情况:
如果left < right,这说明叠加后的区间与上一次叠加的区间有相重的部分,去除即可,left = right +1
计算区间覆盖的数的个数:
int intervalNum(int a, int b, int x, int y)
{
int res = 0;
if(a >= x && b <= y)
{
res = b - a + 1;
}
else if(a <= x && b >= y)
{
res = y - x + 1;
}
else if(b < x || a > y)
{
res = 0;
}
else if(a >= x && a <=y)
{
res = y - a + 1;
}
else if(b >= x && b <= y)
{
res = b - x + 1;
}
else
{
res = 0;
}
return res;
}
按照这样的想法写出代码,但当区间[x,y]很大时会超时,如[a,b]=[2,3],[x,y]= [1, 100000000]
int coverNum(int a, int b, int x, int y)
{
int res;
int left = a;
int leftTmp;
int right = b;
int rightTmp;
if(a <= x && b >= y)
{
return y - x + 1;
}
else if(a > y)
{
return 0;
}
if(a == 1)
{
return y - x + 1;
}
res = 0;
while(1)
{
res += intervalNum(left, right, x, y);
// printf("left = %d, right = %d res = %d\n", left, right, res);
if(left > y || right > y)
{
break;
}
leftTmp = left + a;
rightTmp = right + b;
if(leftTmp <= right)
left = right + 1;
else
left = leftTmp;
right = rightTmp;
}
return res;
}
通过分析发现,对比区间[x,y]与[a,b],如果相差数量级很大的话,可以将原来的区间减半计算,计算结果再加上这一半的值即可,因为小的区间一定可以覆盖的了更大的区间。这样就不会超时了
int coverNum2(int a, int b, int x, int y)
{
int res;
int left = a;
int leftTmp;
int right = b;
int rightTmp;
int yIdx = 1;
int bIdx = 1;
int yTmp = y;
int bTmp = b;
if(a <= x && b >= y)
{
return y - x + 1;
}
else if(a > y)
{
return 0;
}
if(a == 1)
{
return y - x + 1;
}
while(yTmp > 0)
{
yTmp /= 10;
yIdx *= 10;
}
while(bTmp > 0)
{
bTmp /= 10;
bIdx *= 10;
}
if(bIdx * 10 < yIdx)
{
yIdx /= 2;
y -= yIdx;
}
else
yIdx = 0;
res = 0;
while(1)
{
res += intervalNum(left, right, x, y);
// printf("left = %d, right = %d res = %d\n", left, right, res);
if(left > y || right > y)
{
break;
}
leftTmp = left + a;
rightTmp = right + b;
if(leftTmp <= right)
left = right + 1;
else
left = leftTmp;
right = rightTmp;
}
res += yIdx;
return res;
}
上面的代码通过测试。
int main()
{
int res;
res = coverNum(3, 1000, 1, 500001234);
printf("%d\n", res);
res = coverNum2(3, 1000, 1, 500001234);
printf("%d\n", res);
return 0;
}
运行结果