若对基本命令已有了解,可以通过该链接查看具体用法
Redis
Redis是Remote Dirctionary Service的简称,即远程字典服务;
Redis是内存数据库(数据都存储在内存中,mysql中主要数据存储在磁盘)、KV数据库(key-value)、数据结构数据库(value提供了丰富的数据结构);
Redis应用非常广泛,如Twitter、暴雪娱乐、Github、Stack Overflow、腾讯、阿里、京东等等,很多中小型公司也在使用;
Redis有16个数据库(字典),并且是单线程的,所以使用时只使用一个数据库。一个key只对应一个value;
使用Redis步骤
1、connect,客户端连接Redis;
2、auth,输入登录信息,用户名与密码;未设置密码则不需要输入密码;
3、select,选择要使用的数据库(Redis有16个数据库),不选择则默认使用第0个数据库
value
注意:Redis中的数字是从1开始,而不是从0开始的。负数代表倒数,如-1为倒数第一个、-2为倒数第二个
Redis中value编码
string
字符数组,该字符串是动态字符串 raw,字符串长度小于1M 时,加倍扩容;超过 1M 每次只多扩1M;字符串最大长度为 512M;
注意:redis 字符串是二进制安全字符串;可以存储图片,二进制协议等二进制数据;
基础命令
# 设置 key 的 value 值
SET key val
# 获取 key 的 value
GET key
# 执行原子加一的操作
INCR key
# 执行原子加一个整数的操作
INCRBY key increment
# 执行原子减一的操作
DECR key
# 执行原子减一个整数的操作
DECRBY key decrement
# 如果key不存在,这种情况下等同SET命令。 当key存在时,什么也不做
SETNX key value
# 删除 key val 键值对
DEL key
# 设置或者清空key的value(字符串)在offset处的bit值。
SETBIT key offset value
# 返回key对应的string在offset处的bit值
GETBIT key offset
# 统计字符串被设置为1的bit数.
BITCOUNT key
存储结构
字符串长度小于等于 20 且能转成整数,则使用 int 存储;
字符串长度小于等于 44,则使用 embstr 存储;
字符串长度大于 44,则使用 raw 存储;
应用
# 对象存储
SET role:10001 '{["name"]:"mark",["sex"]:"male",["age"]:30}'
GET role:10001
# 一般Redis客户端可以识别':',role:10001是指10001行的数据
# 这个value是json格式,如果经常需要修改还是用hash来存储比较好
# 累加器
# 统计阅读数 累计加1
incr reads
# 累计加100
incrby reads 100
# 分布式锁 ,本例简单展示一下,后序文章中会具体讲解
# 加锁
setnx lock 1
# 释放锁
del lock
# 1. 排他功能 2. 加锁行为定义 3. 释放行为定义
# 位运算
# 月签到功能 10001 用户id 202106 2021年6月份的签到 6月份的第1天
setbit sign:10001:202106 1 1
# 计算 2021年6月份 的签到情况
bitcount sign:10001:202106
# 获取 2021年6月份 第二天的签到情况 1 已签到 0 没有签到
getbit sign:10001:202106 2
list
双向链表实现,列表首尾操作(删除和增加)时间复杂度 O(1) ;查找中间元素时间复杂度为O(n) ;
列表中数据是否压缩的依据:
- 元素长度小于 48,不压缩;
- 元素压缩前后长度差不超过 8,不压缩;
基础命令
# 从队列的左侧入队一个或多个元素
LPUSH key value [value ...]
# 从队列的左侧弹出一个元素
LPOP key
# 从队列的右侧入队一个或多个元素
RPUSH key value [value ...]
# 从队列的右侧弹出一个元素
RPOP key
# 返回从队列的 start 和 end 之间的元素 0, 1 2
LRANGE key start end
# 从存于 key 的列表里移除前 count 次出现的值为 value 的元素
LREM key count value
# 它是 RPOP 的阻塞版本,因为这个命令会在给定list无法弹出任何元素的时候阻塞连接
BRPOP key timeout # 超时时间 + 延时队列
存储结构
/* Minimum ziplist size in bytes for attempting compression. */
#define MIN_COMPRESS_BYTES 48
/* quicklistNode is a 32 byte struct describing a ziplist for a quicklist.
* We use bit fields keep the quicklistNode at 32 bytes.
* count: 16 bits,
* max 65536 (max zl bytes is 65k, so max count actually < 32k).
* encoding: 2 bits, RAW=1, LZF=2.
* container: 2 bits, NONE=1, ZIPLIST=2.
* recompress: 1 bit, bool, true if node is temporary decompressed for usage.
* attempted_compress: 1 bit, boolean, used for verifying during testing.
* extra: 10 bits, free for future use; pads out the remainder of 32 bits */
typedef struct quicklistNode {
struct quicklistNode *prev;
struct quicklistNode *next;
unsigned char *zl;
unsigned int sz; /* ziplist size in bytes */
unsigned int count : 16; /* count of items in ziplist */
unsigned int encoding : 2; /* RAW==1 or LZF==2 */
unsigned int container : 2; /* NONE==1 or ZIPLIST==2 */
unsigned int recompress : 1; /* was this node previous compressed? */
unsigned int attempted_compress : 1; /* node can't compress; too small */
unsigned int extra : 10; /* more bits to steal for future usage */
} quicklistNode;
typedef struct quicklist {
quicklistNode *head; quicklistNode *tail;
unsigned long count; /* total count of all entries in all ziplists */
unsigned long len; /* number of quicklistNodes */
int fill : QL_FILL_BITS; /* fill factor for individual nodes */
unsigned int compress : QL_COMP_BITS; /* depth of end nodes not to compress;0=off */
unsigned int bookmark_count: QL_BM_BITS; quicklistBookmark bookmarks[];
} quicklist;
应用
# 栈(先进后出 FILO)
LPUSH + LPOP
# 或者
RPUSH + RPOP
# 队列(先进先出 FIFO)
LPUSH + RPOP
# 或者
RPUSH + LPOP
# 阻塞队列(blocking queue)
LPUSH + BRPOP
# 或者
RPUSH + BLPOP
异步消息队列:
操作与队列一样,但是在不同系统间;
hash
散列表,在很多高级语言当中包含这种数据结构;c++ unordered_map 通过 key 快速索引value;
基础命令
# 获取 key 对应 hash 中的 field 对应的值
HGET key field
# 设置 key 对应 hash 中的 field 对应的值
HSET key field value
# 设置多个hash键值对
HMSET key field1 value1 field2 value2 ... fieldn valuen
# 获取多个field的值
HMGET key field1 field2 ... fieldn
# 给 key 对应 hash 中的 field 对应的值加一个整数值
HINCRBY key field increment
# 获取 key 对应的 hash 有多少个键值对
HLEN key
# 删除 key 对应的 hash 的键值对,该键为field
HDEL key field
存储结构
节点数量大于 512(hash-max-ziplist-entries) 或所有字符串长度大于 64(hash-max-ziplistvalue),则使用 dict 实现;
节点数量小于等于 512 且有一个字符串长度小于 64,则使用 ziplist 实现;
应用
# 存储对象
{
hmset hash:10001 name mark age 18 sex male
# 与 string 比较
set hash:10001 '{["name"]:"mark",["sex"]:"male",["age"]:18}'
# 假设现在修改 mark的年龄为19岁
# hash:
hset hash:10001 age 19
# string:
get role:10001
# 将得到的字符串调用json解密,取出字段,修改 age 值
# 再调用json加密
set role:10001 '{["name"]:"mark",["sex"]:"male",["age"]:19}'
}
# 购物车
{
# 将用户id作为 key
# 商品id作为 field
# 商品数量作为 value
# 注意:这些物品是按照我们添加顺序来显示的;
# 添加商品:
hset MyCart:10001 40001 1
lpush MyItem:10001 40001
# 增加数量:
hincrby MyCart:10001 40001 1
hincrby MyCart:10001 40001 -1 # 减少数量1
# 显示所有物品数量:
hlen MyCart:10001
# 删除商品:
hdel MyCart:10001 40001
lrem MyItem:10001 1 40001
# 获取所有物品:
lrange MyItem:10001
# 40001 40002 40003
hget MyCart:10001 40001
hget MyCart:10001 40002
hget MyCart:10001 40003
}
set
集合;用来存储唯一性字段,不要求有序;
基础命令
# 添加一个或多个指定的member元素到集合的 key中
SADD key member [member ...]
# 计算集合元素个数
SCARD key
# 返回key中所有value
SMEMBERS key
# 返回成员 member 是否是存储的集合 key的成员
SISMEMBER key member
# 随机返回key集合中的一个或者多个元素,不删除这些元素
SRANDMEMBER key [count]
# 从存储在key的集合中移除并返回一个或多个随机元素
SPOP key [count]
# 返回一个集合与给定集合的差集的元素
SDIFF key [key ...]
# 返回指定所有的集合的成员的交集
SINTER key [key ...]
# 返回给定的多个集合的并集中的所有成员
SUNION key [key ...]
存储结构
元素都为整数且节点数量小于等于 512(set-max-intset-entries),则使用整数数组存储;
元素当中有一个不是整数或者节点数量大于 512,则使用字典存储;
应用
# 抽奖
{
# 添加抽奖用户
sadd Award:1 10001 10002 10003 10004 10005 10006
sadd Award:1 10009
# 查看所有抽奖用户
smembers Award:1
# 抽取多名幸运用户
srandmember Award:1 10
}
# 共同关注
{
sadd follow:A mark king darren mole vico
sadd follow:C mark king darren
sinter follow:A follow:C
}
# 推荐好友
{
sadd follow:A mark king darren mole vico
sadd follow:C mark king darren
# C可能认识的人:
sdiff follow:A follow:C
}
zset
有序集合;用来实现排行榜;它是一个有序唯一;
基础命令
# 添加到键为key有序集合(sorted set)里面
ZADD key [NX|XX] [CH] [INCR] score member [score member ...]
# 从键为key有序集合中删除 member 的键值对
ZREM key member [member ...]
# 返回有序集key中,成员member的score值
ZSCORE key member
# 为有序集key的成员member的score值加上增量increment
ZINCRBY key increment member
# 返回key的有序集元素个数
ZCARD key
# 返回有序集key中成员member的排名
ZRANK key member
# 返回存储在有序集合key中的指定范围的元素 order by id limit 1,100
ZRANGE key start stop [WITHSCORES]
# 返回有序集key中,指定区间内的成员(逆序)
ZREVRANGE key start stop [WITHSCORES]
存储结构
节点数量大于 128或者有一个字符串长度大于64,则使用跳表(skiplist);
节点数量小于等于128(zset-max-ziplist-entries)且所有字符串长度小于等于64(zset-maxziplist-value),则使用 ziplist 存储;
数据少的时候,节省空间; O(n)
数量多的时候,访问性能;O(1) o(logn)
应用
# 热榜
{
# 点击新闻:
zincrby hot:20210601 1 10001
zincrby hot:20210601 1 10002
zincrby hot:20210601 1 10003
zincrby hot:20210601 1 10004
zincrby hot:20210601 1 10005
zincrby hot:20210601 1 10006
zincrby hot:20210601 1 10007
zincrby hot:20210601 1 10008
zincrby hot:20210601 1 10009
zincrby hot:20210601 1 10010
# 获取排行榜:
zrevrange hot:20210601 0 9 withscores
}
# 延时队列
# 将消息序列化成一个字符串作为 zset 的 member;这个消息的到期处理时间作为 score,
# 然后用多个线程轮询 zset 获取到期的任务进行处理。
{
def delay(msg):
msg.id = str(uuid.uuid4()) #保证 member 唯一
value = json.dumps(msg)
retry_ts = time.time() + 5 # 5s后重试
redis.zadd("delay-queue", retry_ts, value)
# 使用连接池
def loop():
while True:
values = redis.zrangebyscore("delay-queue", 0, time.time(), start=0, num=1)
if not values:
time.sleep(1)
continue
value = values[0]
success = redis.zrem("delay-queue", value)
if success:
msg = json.loads(value)
handle_msg(msg)
# 缺点:loop 是多线程竞争,两个线程都从zrangebyscore获取到数据,但是zrem一个成功一个失 败
# 优化:为了避免多余的操作,可以使用lua脚本原子执行这两个命令
# 解决:漏斗限流
}
# 时间窗口限流
# 系统限定用户的某个行为在指定的时间范围内(动态)只能发生N次;
{
# 指定用户 user_id 的某个行为 action 在特定时间内 period 只允许发生做多的次数 max_count
local function is_action_allowed(red, userid, action, period, max_count)
local key = tab_concat({"hist", userid, action}, ":")
local now = zv.time()
red:init_pipeline()
# 记录行为
red:zadd(key, now, now)
# 移除时间窗口之前的行为记录,剩下的都是时间窗口内的记录
red:zremrangebyscore(key, 0, now - period *100)
# 获取时间窗口内的行为数量
red:zcard(key)
# 设置过期时间,避免冷用户持续占用内存 时间窗口的长度+1秒
red:expire(key, period + 1)
local res = red:commit_pipeline()
return res[3] <= max_count
end
# 维护一次时间窗口,将窗口外的记录全部清理掉,只保留窗口内的记录;
# 缺点:记录了所有时间窗口内的数据,如果这个量很大,不适合做这样的限流;漏斗限流
# 注意:如果用 key + expire 操作也能实现,但是实现的是熔断,维护时间窗口是限流的功能;
}
分布式定时器:
生产者将定时任务 hash 到不同的 redis 实体中,为每一个 redis 实体分配一个 dispatcher 进程,用来定时获取 redis 中超时事件并发布到不同的消费者中;