使用 StreamlitCallbackHandler 打造交互式数据应用

老铁们,这篇文章咱们来聊聊如何使用 Streamlit 和 LangChain 打造一款实时交互的智能应用。Streamlit 真是个好东西,它可以把我们的数据脚本快速变为可分享的 web 应用,而且全程只需要写 Python,完全不需要前端经验,简直是数据科学家的福音。有兴趣的可以去 streamlit.io/generative-ai 看看更多案例。

技术背景介绍

Streamlit 提供了一个快速创建和共享数据应用的途径,通过它,我们可以将数据脚本在几分钟内变成分享的 web 应用。特别是在 AI 和数据科学领域,Streamlit 是一个不可或缺的工具。今天,我将展示如何使用 StreamlitCallbackHandler 在我们的应用中显示智能体的思考过程和动作。

原理深度解析

StreamlitCallbackHandler 是一个强大的工具,它允许我们在 Streamlit 应用中可视化 LangChain 智能体的思考和行为。说白了,这东西可以让我们实时看到智能体的决策过程,非常适合用来调试和展示我们的 AI 模型。

实战代码演示

首先,你需要安装必要的库:

pip install langchain streamlit

安装完毕后,可以通过 streamlit hello 验证安装是否成功。然后,我们来看看如何使用 StreamlitCallbackHandler

from langchain_community.callbacks.streamlit import StreamlitCallbackHandler
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值