想要拥有不平凡的人生,请先拿出不平凡的努力。
前言
此内容为学习廖雪峰Python教程的学习笔记,内容是个人认为常常疏忽或是未了解的知识点,不具连贯性,如要学习Python,推荐前往廖雪峰官方站点学习。
基础常见问题
编码问题
1.在最新的Python 3版本中,字符串是以Unicode编码的。
2.字符串默认类型为str
类型,在内存中以Unicode表示,一个字符对应若干个字节。
3.这常常会导致一些问题,特别是在进行相关字符串加密解密时,一定要考虑到先把字符串转为以字节为单位的bytes
可以直接转,也可以通过encode()
方法可以编码为指定的bytes,反正一定要记得转,否则会出错。
Python3中的bytes和bytearray
1.bytes:不可变字节类型,bytes是字节组成的有序的不可变序列
2.字节数组,可变,bytearray是字节组成的有序的可变序列
3.其他相关使用,请看这里
关于迭代
1.字典的迭代,默认情况下,dict
迭代的是key
。如果要迭代value
,可以用for value in d.values()
,如果要同时迭代key
和value
,可以用for k, v in d.items()
。
2.判断一个对象是可迭代对象,可用
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
3.如果要对list实现下标循环,用enumerate
,enumerate
函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C
4.上面的for循环里,同时引用了两个变量,这种在Python中是很常见的,也很常用
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print(x, y)
...
1 1
2 4
3 9
列表生成式
多用方知,几个例子:
# 生成 x * x列表
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
# 附加条件
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
# 使用两层循环
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
# 将字典转为列表
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']
# 把列表中的字符串都变为小写,由于非字符串类型没有lower()方法,所以要分别讨论
>>> L1 = ['Hello', 'World', 18, 'Apple', None]
>>> L2 = [x.lower() if isinstance(x, str) else x for x in L1]
>>> L2
['hello', 'world', 18, 'apple', None]
>>>
生成器
通过列表生成式,可以直接创建一个列表。但由于受到内存限制,列表容量肯定是有限的。同时,列表元素可以按照某种算法推算出来,那是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
1.和列表生成是类似,generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,即:只要把一个列表生成式的[]
改成()
,就创建了一个generator。当然,也可以通过函数实现复杂逻辑的generator。
2.生成器中的值可通过next(g)
(g为生成器)一个一个访问,因为generator保存的是算法,每次调用next(g)
,就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。
3.next(g)
一般不用,一般使用for循环,因为generator也是可迭代对象
# 可写为生成器的函数中使用yield即为生成器
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
# generator函数的“调用”实际返回一个generator对象
print(fib(6))
# 通过for循环访问,注意,这里得不到 return 'done' 即打印不出done,下面有说明。
for i in fib(6):
print(i)
4.generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
5.for循环调用generator时,发现得不到generator的return语句的返回值。如果想要得到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value中
# 通过捕获StopIteration错误,获取return返回值,返回值包含在StopIteration的value中
g = fib(6)
while True:
try:
x = next(g)
print('g:', x)
except StopIteration as e:
print(