Django REST项目实战:在线中文字符识别

120 篇文章 0 订阅
116 篇文章 0 订阅

我们一起开发在线中文字符识别系统实训以了解Django REST项目,体会前后端分离开发的思想并掌握基本开发流程。

**01、**RESTful概述

RESTful架构风格最初由Roy T. Fielding(HTTP/1.1协议专家组负责人)在其2000年的博士学位论文中提出。HTTP就是该架构风格的一个典型应用。从其诞生之日开始,它就因其可扩展性和简单性受到越来越多的架构师和开发者们的青睐。一方面,随着云计算和移动计算的兴起,许多企业愿意在互联网上共享自己的数据和功能;另一方面,在企业中,RESTful API也逐渐受到重视。时至今日,RESTful架构风格已成为企业级服务的标配。REST即Representational State Transfer的缩写,译为“表现层状态转化”。REST最大的几个特点为:资源统一接口URI无状态。所谓“资源”,就是网络上的一个实体,或者说是网络上的一个具体信息,它可以是一段文本、一张图片、一首歌曲等。资源通过某种载体反应其内容,文本可以用txt格式表现,也可以用HTML格式或XML格式表现,甚至可以采用二进制格式;图片可以用JPG格式表现,也可以用PNG格式表现;JSON是现在最常用的资源表示格式。

在前面的企业门户网站实战项目中,为了能够动态的显示页面内容,使用了Django提供的模板机制,即在前端HTML页面中嵌入了大量的Django模板标签,这些标签并不是HTML的标签,而是需要通过后台Django服务器对这些标签进行解析再返回页面内容给前端。尽管利用Django模板标签,可以使得后端开发人员比较方便的对前端页面内容进行控制,但是这种处理方式导致各个模板文件不再是纯粹的HTML页面,而是嵌入了一堆浏览器无法直接识别的模板标签,前端设计人员在不熟悉Django的情况下无法对这些内容进行设计和修改。目前,很多大型Web项目的开发往往是采用一种前后端分离的合作方式,前端设计人员专注于页面和交互功能的实现,通过HTML、CSS和JS即可在浏览器端进行设计并且查看效果。后端开发人员仅处理前端发来的各种请求,并返回各请求对应的内容即可,其中后端开发人员不再需要关注页面的设计,而是通过双方约定好的API接口协议进行资源上传和接收。这种前后端分离、仅通过内容交换实现的Web架构即为REST。

在前后端分离的应用模式中,后端仅返回前端所需要的数据,不再渲染HTML页面,不再控制前端的效果。前端用户看到什么效果、从后端请求的数据如何加载到前端中,这些都由前端决定。例如网页有网页的设计方式,手机APP有手机APP的处理方式,但无论哪种前端其所需要的数据基本相同,后端仅需开发同一套逻辑对外提供资源数据即可。

02、搭建框架

我们将采用Django来开发一个基于RESTful风格的项目实例:中文字符识别。

我们首先完成基础框架搭建。新建一个ocr文件夹用于存放项目,在该文件夹下分别建立三个子文件夹frontend、ocr和app,其中frontend文件夹用于存放前端文件,包括html、css、js和img文件等,ocr文件夹用于存放项目的配置文件,app文件夹作为应用文件夹用于存放每个独立应用文件。参照Django项目目录结构,在各子文件夹下创建一些空文件和空文件夹,完整结构如图1所示。

▍图 1 项目文件结构图

接下来将单文件Django项目的各模块内容填入到指定的文件中。打开settings.py文件,添加代码如下:

import?os
#?设置项目根目录
BASE_DIR?=?os.path.dirname(os.path.dirname(os.path.abspath(__file__)))?
#?加密签名
SECRET_KEY?=?'b!iohd&_vv@gmva5b6gq@k9t01_k^52uludvw8@h0)1fnez^8l'??????
DEBUG?=?True?????????????????#?设置当前为调试模式
INSTALLED_APPS?=?['app']???#?添加应用
ROOT_URLCONF?=?'ocr.urls'??#?设置项目路由文件urls

述代码将原Django项目中的必要部分剥离出来,旨在能够建立更轻量更易于理解的Django项目。打开app应用下的views.py文件,添加代码:

from?django.http?import?HttpResponse

def?home(request):
????return?HttpResponse('Hello?World')

通过导入的HttpResponse函数响应前端,返回内容为一个字符串。在urls.py文件中添加路由:

from?django.urls?import?path
from?app.views?import?home

urlpatterns?=?[path('',?home,?name='home')]

上述代码将访问根路径与视图home函数进行绑定。最后,在项目根目录下的manage.py文件中添加运行代码:

if?__name__?==?'__main__':
????import?sys
????import?django
????import?os
????DJANGO_SETTINGS_MODULE?=?'ocr.settings'
????#?设置环境变量
????os.environ.setdefault('DJANGO_SETTINGS_MODULE',?'ocr.settings')
????django.setup()
????from?django.core.management?import?execute_from_command_line
????execute_from_command_line(sys.argv)

其中注意,我们将所有的配置全部放置在单文件脚本中,使用settings.configure(**settings)来加载配置项,此处我们将所有的配置项放置在了独立的settings.py文件中。为了能够加载该配置文件,需要采用django.setup()函数进行设置,该函数会自动查询环境变量DJANGO_SETTINGS_MODULE的值,把这个值作为配置文件的路径。保存所有修改后,在终端中运行命令:

python?manage.py?runserver

然后打开浏览器访问127.0.0.1:8000,查看页面是否输出对应的字符串“Hello World”。

03、前端开发

我们拟实现一个在线中文字符识别系统,用户在网页上上传图片,然后通过Ajax技术将图片传输至后台服务器,后台服务器调用中文字符识别算法将图片中的文字识别出来,并以JSON字符串的形式返回结果给前端页面进行显示。整个开发过程分为前端和后端,后端不再使用Django提供的模板机制来控制前端页面的执行逻辑,前后端之间所有的交互全部通过API接口进行。由于采用了前后端分离的机制,因此,前端开发人员可以使用纯HTTP和JS来开发页面和交互逻辑,并且能够在不借助后端的情况下运行页面查看效果。本小节先进行前端开发。

前端所有的开发文件全部放置在frontend文件夹中。为了程序美观,本实例依然采用Bootstrap框架设计页面。将Bootstrap包中的bootstrap.min.css、jquery.min.js和bootstrap.min.js文件按照文件类型分别放置在frontend/css和frontend/js文件夹中,然后在img文件夹下放置一张名为sample.jpg的图片文件用于展示图像显示区域。在css文件夹下额外新建一个空的style.css文件,该文件将作为本实例的个性化样式定制文件使用。

接下来开始编辑前端页面index.html。首先设置页面标题title和元信息meta,然后在页面头部引入必要的css和js文件:

<!DOCTYPE html>
<html lang="zh-CN">
<head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1">
    <title>在线中文字符识别</title>
    <link href="css/bootstrap.min.css" rel="stylesheet">
    <link href="css/style.css" rel="stylesheet">
    <script src="js/jquery.min.js"></script>
    <script src="js/bootstrap.min.js"></script>
</head>
<body>
</body>
</html>

在页面部分采用Bootstrap栅格结构进行布局,主要分为左右两部分,各占6个栅格。左侧用来上传待识别的图像并显示,右侧用来显示识别结果。详细代码如下:

<div?class="container">
????<!--?标题?-->
????<div?class="row">
????????<div?class="col-lg-12">
????????????<p?class="text-center?h1">
????????????????在线中文字符识别
????????????</p>
????????</div>
????</div>
????<!--?分隔符?-->
????<div?class="hr">
????????<hr?/>
????</div>
????<!--?主体内容?-->
????<div?class="row">
????????<br>
????????<!--?图片上传?-->
????????<div?class="col-md-6">
????????????<img?id="photoIn"?src="img/sample.jpg"?class="img-responsive">
????????????<input?type="file"?id="photo"?name="photo"?/>
????????</div>
????????<!--?运行结果?-->
????????<div?class="col-md-6">
????????????<div?class="col-md-12">
????????????????<textarea?id="output"?disabled?class="form-control"?rows="5">
????????????????????</textarea>
????????????</div>
????????????<br>
????????????<div?class="col-md-12">
????????????????<p?class="text-center?h4">识别结果</p>
????????????</div>
????????</div>
????</div>
????<br>
????<div?class="row">
????????<div?class="text-center">
????????????<button?type="button"?id="recognition"?class="btn?btn-primary">
识别</button>
????????</div>
????</div>
</div>

在style.css文件中添加分割线对应的样式设计:

div.hr?{
????height:?3px;
????background:?#818080;
}
div.hr?hr?{
????display:?none;
}

为了能够实现图像浏览和上传的功能,需要使用js来实现。具体的,在部分末尾添加代码:

<script>
????$(function?()?{
????????$('#photo').on('change',?function?()?{
????????????var?r?=?new?FileReader();
????????????f?=?document.getElementById('photo').files[0];
????????????r.readAsDataURL(f);
????????????r.onload?=?function?(e)?{
????????????????document.getElementById('photoIn').src?=?this.result;
????????????};
????????});
????});
</script>

接下来,在前端页面中继续添加代码完成图像向后端的传输以及获取到后端发来的结果后的显示处理:

<!--?图像发送至后台服务器进行识别?-->
<script>
????$('#recognition').click(function?()?{
????????formdata?=?new?FormData();
????????var?file?=?$("#photo")[0].files[0];
????????formdata.append("image",?file);
????????$.ajax({
????????????url:?'/ocr/',?????????//?调用Django服务器计算函数
????????????type:?'POST',?????????//?请求类型
????????????data:?formdata,
????????????dataType:?'json',?????//?期望获得的响应类型为json
????????????processData:?false,
????????????contentType:?false,
????????????success:?ShowResult???//?在请求成功之后调用该回调函数输出结果
????????})
????})
</script>

<!--?返回结果显示?-->
<script>
????function?ShowResult(data)?{
????????output.value?=?data['output'];
????}
</script>

图像的传输采用了Ajax技术,当用户单击“识别”按钮时将图像数据封装到formdata变量并发送至后端,发送地址为’/ocr/',发送方式为POST。收到结果后执行ShowResult函数,将输出文本的值改为识别到的文字信息。

保存所有修改后,用浏览器直接打开index.html页面,单击“浏览”按钮,选择一张待识别的图片进行上传,可以看到选择的图片显示在指定位置,如图2所示。

▍图2前端开发效果图

到这里我们发现整个的前端设计和开发不再依赖后端服务器,并且由于页面没有嵌入Django模板标签,因此可以直接被浏览器解析和运行。这种前后端分离的开发模式可以极大的提高团队开发人员的沟通效率,使得项目的协同合作更加方便。

04、后端开发

我们继续将对后端进行开发。一般情况下,采用前后端分离机制以后前端静态资源(html页面、css样式文件、jpg图片等)会采用额外的前端服务器来提供静态文件服务。我们为了简化服务器的搭建和使用,依然使用Django来提供静态文件服务,将所有的静态资源例如css、js和jpg图片文件等按照文件夹路径创建对应的视图处理函数,以文件读取方式获取文件内容并通过HttpResponse返回。

在views.py文件中添加代码如下:

def?read_css(request,?filename):
????with?open('frontend/css/{}'.format(filename),?'rb')?as?f:
????????css_content?=?f.read()
????print('css文件')
????return?HttpResponse(content=css_content,?content_type='text/css')

def?read_js(request,?filename):
????with?open('frontend/js/{}'.format(filename),?'rb')?as?f:
????????js_content?=?f.read()
????print('js文件')
????return?HttpResponse(content=js_content,
????????????????????????content_type='application/JavaScript')

def?read_img(request,?filename):
????with?open('frontend/img/{}'.format(filename),?'rb')?as?f:
????????img_content?=?f.read()
????print('img文件')
????return?HttpResponse(content=img_content,?content_type='image/jpeg')

上述代码分别创建js、css和jpg文件访问的视图处理函数,然后在urls.py文件中设置访问路由:

from?app.views?import?read_css,?read_js,?read_img

urlpatterns?=?[
????...其他路由...
????path('css/<str:filename>',?read_css,?name='read_css'),
????path('js/<str:filename>',?read_js,?name='read_js'),
????path('img/<str:filename>',?read_img,?name='read_img'),
]

通过这种方式,可以使得在不改变前端代码的情况下能够正确的提供静态资源请求服务。重新编辑views.py中的home函数:

def?home(request):
????with?open('frontend/index.html','rb')?as?f:
????????html?=?f.read()
????return?HttpResponse(html)

同样的,html页面也以文件读取方式获取内容并通过HttpResponse返回。保存所有修改后启动项目:

python?manage.py?runserver

打开浏览器查看页面效果。可以发现页面效果与使用浏览器直接打开index.html页面相同。这说明,后端服务器正确的充当了静态资源服务器的角色,在不使用Django模板标签的情况下能够实现前端页面的正确渲染。

最后需要开发中文字符识别对应的Ajax视图处理函数。为了实现中文字符识别,我们采用开源库Tesseract-OCR来进行文字识别任务。Tesseract是惠普布里斯托实验室在1985~1995年间开发的一个开源的字符识别引擎,曾经在1995 UNLV精确度测试中名列前茅。2005年,惠普将其对外开源。2006年由Google对Tesseract进行改进并对其进行深度优化。

Tesseract的下载网址为:

https://digi.bib.uni-mannheim.de/tesseract/
。根据系统版本进行选择,如果使用Windows 64位系统,可以下载windows 64对应的版本:tesseract-ocr-w64-setup-v4.1.0.20190314.exe。下载完成后双击进入安装界面,展开Additional language data,勾选arabic和Chinese simplified使得能够同时支持阿拉伯数字和简体中文字符的识别。

▍图 3 Tesseract-OCR安装界面

为了能够在Python中使用该引擎库,需要安装对应的Python库:

pip?install?pytesseract

然后修改pytesseract库文件,在pytesseract安装包中找到pytesseract.py文件,修改tesseract_cmd字段的值,将tesseractOCR的安装目录填入其中:

tesseract_cmd?=?r'<tesseractOCR安装目录>	esseract.exe'

通过上述修改,就可以使得Python能够找到本地的文字识别程序完成识别。接下来在views.py文件中添加视图处理函数,完整代码如下:

import?numpy?as?np????
import?urllib?????????
import?numpy?as?np????
import?urllib?????????
import?json??????????
import?cv2??????????
import?pytesseract
from?PIL?import?Image
import?os??
from?django.views.decorators.csrf?import?csrf_exempt?
from?django.http?import?JsonResponse??

def?read_image(stream=None):
????data_temp?=?stream.read()
????image?=?np.asarray(bytearray(data_temp),?dtype="uint8")
????image?=?cv2.imdecode(image,?cv2.IMREAD_COLOR)
????return?image

@csrf_exempt??#?用于规避跨站点请求攻击
def?ocrDetect(request):
????result?=?{"code":?None}??
????if?request.method?==?"POST":
????????if?request.FILES.get("image",?None)?is?not?None:??
????????????img?=?read_image(stream=request.FILES["image"])
????????#?OpenCV转PIL
????????img?=?Image.fromarray(cv2.cvtColor(img,?cv2.COLOR_BGR2RGB))
????????#?执行识别
????????code?=?pytesseract.image_to_string(img,?lang='chi_sim')
????????result.update({"output":?code})
????return?JsonResponse(result)

通过客户端浏览器上传的图像照片进行识别处理然后返回结果,不同之处在于此处返回的结果是以JSON字符串形式给出,不需要再额外的进行图像编码。识别部分主要采用pytesseract.image_to_string函数进行识别,其中lang='chi_sim’表示当前识别中文简体字符。

最后,在urls.py文件的urlpatterns字段中添加对应的路由:

path('ocr/',?ocrDetect,?name='ocrDetect'),??#?在线中文字符识别api

完成所有修改后保存并运行项目,最终识别效果如图4所示。

▍图 4 中文字符识别效果图

经过测试,tesseract—OCR对于印刷体中文字符效果较好,对于手写体中文字符效果一般。如果需要更高的检测精度和更好的适应性,则需要进一步优化算法。

先自我介绍一下,小编13年上师交大毕业,曾经在小公司待过,去过华为OPPO等大厂,18年进入阿里,直到现在。深知大多数初中级java工程师,想要升技能,往往是需要自己摸索成长或是报班学习,但对于培训机构动则近万元的学费,着实压力不小。自己不成体系的自学效率很低又漫长,而且容易碰到天花板技术停止不前。因此我收集了一份《java开发全套学习资料》送给大家,初衷也很简单,就是希望帮助到想自学又不知道该从何学起的朋友,同时减轻大家的负担。添加下方名片,即可获取全套学习资料哦

计算机视觉(Computer Vision)又称为机器视觉(Machine Vision),顾名思义是一门“教”会计算机如何去“看”世界的学科。在机器学习大热的前景之下,计算机视觉与自然语言处理(Natural Language Process, NLP)及语音识别(Speech Recognition)并列为机器学习方向的三大热点方向。在如今互联网时代,人工智能发展迅速,计算机视觉领域应用非常广泛,对人才的需求也是非常大,计算机视觉在IT领域的工资水平非常高,初级就能达到一个很好的薪资水平,学好计算机视觉,势在必得,增加自己的竞争力以及给自己一个好的薪水。 以下是计算机视觉部分应用场景,可以看到它的需求非常大:1.Google, MS, Facebook, Apple,华为,阿里,腾讯,百度等世界科技公司,无一没有建立自己的AI实验室,AI里面,计算机视觉或图像处理是非常重要的一块,当然它们研究方向就多了,几乎会涵盖所有方向。2.世界各大汽车公司,如特斯拉,宝马。汽车公司开始发力自动驾驶,而自动驾驶里面最核心的技术就是“教”汽车里的电脑如何通过摄像头实时产生的图片和视频自动驾驶。因此视觉和图像处理便是核心技术所在,如行人探测,道路识别,模式识别。3.Adobe,美图秀秀等照片、winrar、real player等视频处理、压缩软件。这个不多说,直观的应用,比如降噪,图像分割、图像压缩、视频压缩。4.AR(增强现实)最近由于Pockman GO的风靡全球又被推到第一线,而Google Class或者三星Gear眼镜等等,也无不和图像处理、计算机视觉的科研有关。预测这将是未来几年主推的东西。5.迪士尼等各大电影制片公司。3-D电影,以及各种炫酷的电影特效,当然里面不光有图像处理,还有计算机图形学的东西在里面。6.地平线,大疆无人机等机器人公司。和自动驾驶一个道理,机器人要通过摄像头“判断”并躲开前方障碍物,核心技术都在视觉和图像处理。7.医疗器械设备公司。医学图像处理,核磁共振,断层扫描等等,众所周知医疗行业都是暴利阿。8.工业级摄像头;包括高速路上的摄像头,机场火车站安检摄像头,工业流水线上的摄像头,嵌入了人脸或次品识别的芯片,智能地识别罪犯、次品,等等。 基于SpringBoot+Python多语言文档扫描处理和OCR识别系统,将以基础知识为根基,带大家完成一个强大的文档扫描处理和OCR识别系统,该系统将包含算法部分,算法服务,算法商业化api部分等。应用场景可以为:爬虫图片文字识别、文档图片自动整理和输出文字、实时扫描输出系统、PDF文档转换系统等等,算法可以商业化,系统同时实现了商业化api功能,商业价值非常高,大家可以基于课程项目的基础上进一步完善,做到商用,学到知识的同时,给自己额外增加收入。 本课程包含的技术: 开发工具为:IDEA、WebStorm、PyCharmPythonAnconaOpencvDjangoSpringBootSpringCouldVue+ElementUI+NODEJS等等 课程亮点: 1.与企业接轨、真实工业界产品2.强大的计算机视觉库OPENCV3.从基础到案例,逐层深入,学完即用4.市场主流的前后端分离架构和人工智能应用结合开发5.多语言结合开发,满足多元化的需求6.商业化算法api实现7.多Python环境切换8.微服务SpringBoot9.集成SpringCloud实现统一整合方案 10.全程代码实操,提供全部代码和资料 11.提供答疑和提供企业技术方案咨询
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值