Spark实践之join优化

本文探讨了Spark中join操作的优化,重点介绍了map-side join和reduce-side join的区别,特别是在处理大表与小表join时,如何利用map-side join提升效率,以应对大数据处理场景的挑战。
摘要由CSDN通过智能技术生成


join优化应该是spark相关岗位面试必考的内容。 join其实常见的就分为两类: map-side join 和  reduce-side join。当大表和小表join时,用map-side join能显著提高效率。。


/**
 * Created by shenjiyi on 2015/7/8.
 */

package com.test

import com.test.utils.MySparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object TestJoin {
  def main (args: Array[String]): Unit ={
    val conf = new SparkConf()
      .setMaster(args(0))
      .setAppName("TestJoin")
      .set("spark.speculation", "true")
      .set("spark.default.parallelism", "200")
    val sc = new MySparkContext(conf)

    val input1 = sc.rawTextFile(args(1), "GB18030")
    val input2 = sc.rawTextFile(args(2), "GB18030")
    val output1 = args(3)
    val output2 = arg
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值