最大子数组和

题目描述:

        

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

思路:

        使用res记录和,maxSubArray来记录最大和,通过这两个变量的比较确定最大和

        当res < 0 时,此时res与数组后面的元素求和一定不是最大值

        只有当 res > 0 时,和数组后的元素求和可能得到最大值

public class 最大子数组和 {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		int arr[] = {
				-5219,-8112,-5817,1798,-5300,5168,-1066,9982,-790,9086,-6323,8303,6269,193,-8171,-5086,-227,9953	
		};
		int a = maxSubArray(arr) ;
		System.out.println(a) ;

	}
	
	 public static int maxSubArray(int[] nums) {
		 	//方法一: 最复杂的方法
//	        int maxSubArray = nums[0] ;
//	        int SubArray ;
//	        for(int i = 0 ; i < nums.length ; i ++ ) {
//	            SubArray = nums[i] ;
//	            if(SubArray > maxSubArray) {
//	                    maxSubArray = SubArray ;
//	                }
//	            for(int j = i + 1 ; j < nums.length ; j ++ ) {
//	                SubArray +=  nums[j] ;
//	                if(SubArray > maxSubArray) {
//	                    maxSubArray = SubArray ;
//	                }
//	                if(j == nums.length - 1 ) {
//	                    SubArray = 0 ;
//	                }
//	            }
//	        }
//	        return maxSubArray ;
		 
		 //方法二:
	        int maxSubArray = nums[0] , res = nums[0] ;
	        for( int i = 1 ; i < nums.length ; i ++ ) {
	        	//优化这部分代码
//	            if( res < 0 && nums[i] > 0 ) {
//	                res = nums[i] ; 
//	            } else if (res <= 0 && nums[i] <= 0 ){
//	                if(res < nums[i] ) {
//	                    res = nums[i] ;
//	                }
	        	
	        	 if( res < 0 ){
	                 if( res < nums[i] ) {
	                     res = nums[i] ;
	                 }
	            }else{
	                res += nums[i] ; 
	            }
	            if ( maxSubArray < res ) {
	                maxSubArray = res ;
	            }
	
	
	        }
	        return maxSubArray ;
			 
	        
	        
	        
	        
	        
	 }

}

回溯法是一种常用于解决组合问题的算法,通过不断尝试寻找满足特定条件的解,并记录下已经尝试过的解,从而找到最优解。在求解最大数组和的问题中,可以使用回溯法来找到所有可能的数组,然后从中找出和最大数组。 具体实现时,可以使用递归的方式,从数组的第一个元素开始,判断当前元素是否加入数组中。如果加入,则递归考虑下一个元素;如果不加入,则直接递归考虑下一个元素。需要注意的是,每次递归需要记录当前数组的和,以及当前最大数组和。 下面是一个使用回溯法求解最大数组和的示例代码: ```c #include <stdio.h> int max_sum = 0; // 记录最大数组和 void backtrack(int array[], int start, int sum, int size) { if (start == size) { // 递归终止条件,到达数组末尾 if (sum > max_sum) { max_sum = sum; // 更新最大数组和 } return; } // 加入当前元素 backtrack(array, start + 1, sum + array[start], size); // 不加入当前元素 backtrack(array, start + 1, sum, size); } int main() { int array[] = {1, -2, 3, 10, -4, 7, 2, -5}; int size = sizeof(array) / sizeof(array[0]); backtrack(array, 0, 0, size); printf("最大数组和为:%d\n", max_sum); return 0; } ``` 以上代码中,通过回溯法遍历了数组中的所有数组,并更新最大数组和的值,最终输出结果为最大数组和为18。 需要注意的是,该算法的时间复杂度为O(2^n),因为遍历了所有可能的数组。在实际应用中,可以使用动态规划或分治法等更优化的算法来解决最大数组和的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值