且不考虑这件事的具体细节和真实性,就这个问题而言,首先99的99次方应该是很大的了,long类型肯定装不下,其结果的位数应该接近200位(100的100次方是200位,所以99的99次方与其相比应该不会少到哪里去),但用String装应该绰绰有余了,直接的想法就是用String装数,模拟我们现实中的乘法即可。比如对于某个10进制4位数abcd作为被乘数,4位数efgh作为乘数的乘法运算,我们的乘法法则就是从乘数的最右端的个位数h开始,依次乘以abcd的个位直到万位,得到一个结果。然后乘数往左移动到十位数g,与先前一样,得到结果,但是要乘以10,再与先前的结果相加。重复这个过程,直到乘数的最高位,加上先前的结果得到最终答案。那么在这之前,还要完成大数的加法法则的模拟。大数的加法更容易实现,被加数和加数都从低位开始,逐个相加,直到最高位。
于是大数加法的算法要点:
(1)String类型的被加数num1,和加数num2
(2)用tag表示进位的值,默认为0
(3)第i次从num1和num2的末尾向左数第i位开始取字符,转换成int类型,与进位tag一起相加得到的结果取个位依次存入sum字符串中,十位的值存放到进位tag中。
(4)重复(2),(3)步骤,直到num1和num2全部位数相加完毕
大数乘法的算法要点:
(1)String类型的被乘数num1,和乘数num2
(2)用tag表示进位的值,默认为0
(3)第i次从乘数num2末尾左数第i位开始取字符,转换成int类型,依次与被乘数num1末尾向左数的每一位相乘,并与进位tag一起相加得到的结果取个位依次存入临时结果curSum字符串中,十位的值存放到进位tag中,还应在结果末尾添上i个0。
(4)调用大数加法,将i次的结果与第i-1次的结果相加。
(5)重复(2),(3),(4)的步骤,知道num2的全部位数都计算完毕,得到最终结果
代码如下:
大数加法代码:
package BigNum;
public class BigNumAdd {
private String num1st; // 被加数
private String num2nd; // 加数
public BigNumAdd() {
}
public BigNumAdd(String num1st, String num2nd) {
this.num1st = num1st;
this.num2nd = num2nd;
}
public String add() {
StringBuffer sum = new StringBuffer();
int i = 0, a = 0, b = 0;
int tag = 0; // 进位数
int j, k; // 被加数和加数的位置
j = num1st.length() - 1; //模拟加法法则
k = num2nd.length() - 1;
while (j >= 0 || k >= 0 || tag > 0) {
if (j >= 0) {
a = num1st.charAt(j) - '0';
} else
a = 0;
if (k >= 0) {
b = num2nd.charAt(k) - '0';
} else
b = 0;
try {
if (a < 0 || a > 9 || b < 0 || b > 9) {
throw new NumberFormatException();
}
} catch (NumberFormatException e) {
e.printStackTrace();
return "Argument Error!";
}
i = a + b + tag;
tag = i / 10;
j--;
k--;
sum = new StringBuffer(String.valueOf(i % 10)).append(sum);
}
return sum.toString();
}
}
大数乘法代码:
package BigNum;
public class BigNumTimes {
private String num1st; //被乘数
private String num2nd; //乘数
public BigNumTimes() {
}
public BigNumTimes(String num1st, String num2nd) {
this.num1st = num1st;
this.num2nd = num2nd;
}
public String times() {
int i=0,a=0,b=0;
int j,k; //位置标记
int tag=0; //进位数
StringBuffer sum=new StringBuffer("");
StringBuffer preSum=new StringBuffer("0");
StringBuffer curSum=new StringBuffer("");
k=num2nd.length()-1; //模拟乘法法则
while (k>=0) {
for (int l=0;l<num2nd.length()-1-k;l++){
curSum.append("0");
}
b=num2nd.charAt(k)-'0';
j=num1st.length()-1;
while (j>=0 || tag>0){
if (j >= 0) {
a = num1st.charAt(j) - '0';
} else
a = 0;
try {
if (a<0 || a>9 || b<0 || b>9) {
throw new NumberFormatException();
}
}catch (NumberFormatException e){
e.printStackTrace();
return "Argument Error!";
}
i=b*a+tag;
tag=i/10;
curSum=new StringBuffer(String.valueOf(i%10)).append(curSum);
j--;
}
tag=0;
k--;
sum=new StringBuffer(new BigNumAdd(curSum.toString(),preSum.toString()).add()); //一轮结果相加
preSum=new StringBuffer(sum);
curSum=new StringBuffer("");
}
return sum.toString();
}
//99的99次方
public static void main(String[] args){
String sum="1";
for (int i=1;i<=99;i++){
BigNumTimes bnt=new BigNumTimes(sum,"99");
sum=bnt.times();
System.out.println("99的"+i+"次方="+sum);
}
//System.out.println("位数="+sum.length());
}
}