题目描述
把 m 个同样的苹果放在 n 个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法。(5,1,1 和 1,1,5 是同一种方法)
输入格式
第一行是测试数据的数目 t,以下每行均包括二个整数 m 和 n,以空格分开。
输出格式
对输入的每组数据 m 和 n,用一行输出相应的结果。
输入输出样例
输入 #1
1 7 3
输出 #1
8
输入 #2
3 3 2 4 3 2 7
输出 #2
2 4 2
一看,好像可以用状圧DP?
但我不会啊!
那就用递归!
------------------------华丽分割线----------------------------
详细解释思路(当苹果数大于等于盘子数时的分法):一种是目前所有的盘子都放一个苹果,盘子数不变,即:apple(m-n,n);
另一种是将一个盘子不放,再来进行思考,即:apple(m,n-1);
两种情况的总和就是答案;
接下来就用一个例子来详细解释:
现在有5个苹果和3个盘子;
因为苹果数大于盘子数,所以分成两种:
第一种:目前所有盘子放一个苹果(目前盘子数3个)apple(2,3);
第二种:拿一个盘子不放苹果,剩下的盘子继续考虑,apple(5,2);
apple(2,3):因为苹果数小于盘子数,所以apple(2,2);
apple(2,2):因为苹果数等于盘子数,所以又分为两种:
第一种:目前所有盘子放一个苹果(目前盘子数2个)apple(0,2); 没有苹果,达到边界,返回值1;
第二种:拿一个盘子不放苹果,剩下的盘子继续考虑,apple(2,1); 盘子数只有1个,达到边界,返回值1;
apple(5,2):因为苹果数大于盘子数,所以又分为两种:
第一种:目前所有盘子放一个苹果(目前盘子数2个)apple(3,2);
第二种:拿一个盘子不放苹果,剩下的盘子继续考虑,apple(5,1); 因为盘子数只有1个,达到边界,返回值1;
apple(3,2):因为苹果数大于盘子数,所以又分为两种:
第一种:目前所有盘子放一个苹果(目前盘子数2个)apple(1,2); 苹果数只有1个,达到边界,返回值1;
第二种:拿一个盘子不放苹果,剩下的盘子继续考虑,apple(3,1); 盘子数只有1个,达到边界,返回值1;
所有的值相加得到最后的结果5,记录在数组sum中,最后输出;
哈哈!是不是蒙了?
上代码!
#include<bits/stdc++.h>
using namespace std;
int N,M,t,m,n;
int fb[55][55];
int main()
{
for(int i=0;i<=50;i++)
for(int j=1;j<=50;j++)
{
if(j==1||i==0)fb[i][j]=1;
else if(i<j)fb[i][j]=fb[i][i];
else fb[i][j]=fb[i-j][j]+fb[i][j-1];
}
cin>>t;
while(t--)
{
cin>>m>>n;
cout<<fb[m][n]<<endl;
}
return 0;
}