原子分数坐标指的是以晶胞的平行六面体三条边a、b、c作为坐标系的三个坐标轴,并以其长度作为一个单位来表示晶体内原子的位置,但在进行实际的计算时,需要将原子分数坐标从“晶体坐标系”转变成“笛卡尔坐标系”下表示。这里给出两种坐标系之间的变换矩阵。
设晶胞的平行六面体的三条边长为 a , b , c a,b,c a,b,c,对应的夹角为α,β,γ。

三维空间的旋转、拉伸和平移需要用四阶矩阵来描述,当没有平移操作时,矩阵可以降为三阶,设变换矩阵D为
(1) [ d 11 d 12 d 13 d 21 d 22 d 23 d 31 d 32 d 33 ] \left[ \begin{matrix} d_{11} & d_{12} & d_{13} \\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{33} \end{matrix} \right] \tag{1} ⎣⎡d11d21d31d12d22d32d13d23d33⎦⎤(1)
矩阵D满足
(2) ( x y z ) = D ∗ ( x ′ y ′ z ′ ) \left( \begin{matrix} x\\y\\z \end{matrix} \right)=D* \left( \begin{matrix} x^{'}\\y^{'}\\z^{'}\end{matrix} \right)\tag{2} ⎝⎛