算法导论 附录C C.5-1

抛掷一枚均匀硬币n次都为反面朝上的概率与抛掷一枚均匀硬币4n次得到少于n个正面的概率哪个小?

这题做起来比较蛋疼,因为哪个小与n有关。。。

首先抛n次都为反面朝上的概率为 \frac{1}{2^{n}}

抛4n次得到少于n个正面的概率为 \frac{1}{2^{4n}}\sum_{i = 0}^{n - 1}C_{4n}^{i}

对以上两个概率考虑n+1时的情况:

不难看出第一个在n+1时概率为n时概率的一半

第二个为了方便说明,仅考虑n-1一项的情况,其实不难证明

\frac{1}{2^{4n}}C_{4n}^{n-1} < \frac{1}{2^{4n}}\sum_{i = 0}^{n - 1}C_{4n}^{i} < \frac{3}{2} \cdot \frac{1}{2^{4n}}C_{4n}^{n-1}

有:

\frac{1}{2^{4(n+1)}}C_{4(n + 1)} ^ {(n + 1) - 1} / \frac{1}{2^{4n}}C_{4n}^{n - 1}= \frac{1}{16} \cdot \frac{(4n+4)(4n + 3)(4n + 2)(4n + 1)}{(3n + 4)(3n + 3)(3n + 2)n}

上式随着n增大是大于1/2的,因此虽然n=1时,第一种情况概率大于第二种情况的概率,但应该存在一点使在其后第二种情况概率更大,下借助代码简单查找一下

class dotfind:
    # 阶乘部分
    def factorial(self, n):
        if n > 1:
            return n * self.factorial(n - 1)
        else:
            return 1
    # 组合,延用高中符号C
    def C(self, a, b):
        return self.factorial(a) / self.factorial(b) / self.factorial(a - b)
    # 运行比较,返回第一种和第二种情况概率
    def run(self, n):
        return 1 / 2**n, 1 / 2**(4 * n) * sum(self.C(4 * n, i) for i in range(n))

测试结果如下

因此,n小于18时,第二种情况概率小,否则第一种情况概率小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值