题目大意:有n个点,要求选择一些互不相邻的点,问最多能选择多少点,并判断拿这个数量的点的方案是否唯一
1<=n<=200
思路:我们用dp[u][0]表示不选u这个点,dp[u][1]表示选择u这个点,f[u][0]表示不选这个点是否方案数是否唯一,f[u][1]表示选择这个点时方案数是否唯一,我们从下向上遍历,如果选择这个点,那么他的子节点可选可不选,我们在两者之间取最大,然后如果子节点选和不选的结果是一样的,那就更新f[u][0]=1,否则只有子节点对应状态f为1时再上传,如果我们选这个点,那么子节点都不能选,dp[u][1]+=dp[v][0],同时维护f,我们建立一个超级源点连接1号点,dp[0][0]即为答案
#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
using namespace std;
const int N = 505;
int head[N];
int dp[N][2];
int f[N][2];
struct Edge
{
int u, v, next;
}e[N];
int cnt = 0;
void addedge(int u, int v)
{
e[++cnt].u = u;
e[cnt].v = v;
e[cnt].next = head[u];
head[u] = cnt;
}//链式前向星
int n;
void dfs(int u)
{
dp[u][0] = 0;
dp[u][1] = 1;//初始化状态
for (int i = head[u]; ~i; i = e[i].next)
{
int v = e[i].v;
dfs(v);
if (dp[v][0] == dp[v][1])
{//如果子节点选和不选是一样的
f[u][0] = 1;//当前节点方案不唯一
dp[u][0] += dp[v][0];
}
else if (dp[v][0] > dp[v][1])
{
dp[u][0] += dp[v][0];//当前节点不选,子节点选一个最大的方案
if (f[v][0])//选哪种方案就继承哪种方案的唯一标记
f[u][0] = 1;
}
else
{
dp[u][0] += dp[v][1];//当前节点不选,子节点选一个最大的方案
if (f[v][1])//选哪种方案就继承哪种方案的唯一标记
f[u][0] = 1;
}
dp[u][1] += dp[v][0];//选了当前节点,子节点都不能选
if (f[v][0])
f[u][1] = 1;
}
}
void init()
{
for (int i = 0; i <= n; i++)
{
head[i] = -1;
f[i][0] = f[i][1] = 0;
}
cnt = 0;
}
int main()
{
while (~scanf_s("%d", &n) && n)
{
init();
int cnt2 = 1;
map<string, int>ma;
string s;
cin >> s;
addedge(0, 1);//建立超级源点
ma[s]++;
for (int i = 1; i < n; i++)
{
string u, v;
cin >> u >> v;
if (ma[u] == 0)
ma[u] = ++cnt2;
if (ma[v] == 0)
{
ma[v] = ++cnt2;
}
addedge(ma[v], ma[u]);//因为本题有明确的父子关系,建有向图即可
}
dfs(0);
printf("%d ", dp[0][0]);//答案对应超级源点不选的状态差,或者也可以在1号点选和不选的状态中取最大值
if (f[0][0])//如果是选最大值的话,这里应该对应判断最大的哪个状态是否唯一
printf("No\n");
else
{
printf("Yes\n");
}
ma.clear();
}
return 0;
}