Party at Hali-Bula hdu2412

39 篇文章 0 订阅
23 篇文章 0 订阅

Problem - 2412

题目大意:有n个点,要求选择一些互不相邻的点,问最多能选择多少点,并判断拿这个数量的点的方案是否唯一

1<=n<=200

思路:我们用dp[u][0]表示不选u这个点,dp[u][1]表示选择u这个点,f[u][0]表示不选这个点是否方案数是否唯一,f[u][1]表示选择这个点时方案数是否唯一,我们从下向上遍历,如果选择这个点,那么他的子节点可选可不选,我们在两者之间取最大,然后如果子节点选和不选的结果是一样的,那就更新f[u][0]=1,否则只有子节点对应状态f为1时再上传,如果我们选这个点,那么子节点都不能选,dp[u][1]+=dp[v][0],同时维护f,我们建立一个超级源点连接1号点,dp[0][0]即为答案

#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
using namespace std;
const int N = 505;
int head[N];
int dp[N][2];
int f[N][2];
struct Edge
{
	int u, v, next;
}e[N];
int cnt = 0;
void addedge(int u, int v)
{
	e[++cnt].u = u;
	e[cnt].v = v;
	e[cnt].next = head[u];
	head[u] = cnt;
}//链式前向星
int n;
void dfs(int u)
{
	dp[u][0] = 0;
	dp[u][1] = 1;//初始化状态
	for (int i = head[u]; ~i; i = e[i].next)
	{
		int v = e[i].v;
		dfs(v);
		if (dp[v][0] == dp[v][1])
		{//如果子节点选和不选是一样的
			f[u][0] = 1;//当前节点方案不唯一
			dp[u][0] += dp[v][0];
		}
		else if (dp[v][0] > dp[v][1])
		{
			dp[u][0] += dp[v][0];//当前节点不选,子节点选一个最大的方案
			if (f[v][0])//选哪种方案就继承哪种方案的唯一标记
				f[u][0] = 1;
		}
		else
		{
			dp[u][0] += dp[v][1];//当前节点不选,子节点选一个最大的方案
			if (f[v][1])//选哪种方案就继承哪种方案的唯一标记
				f[u][0] = 1;
		}
		dp[u][1] += dp[v][0];//选了当前节点,子节点都不能选
		if (f[v][0])
			f[u][1] = 1;
	}
}
void init()
{
	for (int i = 0; i <= n; i++)
	{
		head[i] = -1;
		f[i][0] = f[i][1] = 0;
	}
	cnt = 0;
}
int main()
{
	while (~scanf_s("%d", &n) && n)
	{
		init();
		int cnt2 = 1;
		map<string, int>ma;
		string s;
		cin >> s;
		addedge(0, 1);//建立超级源点
		ma[s]++;
		for (int i = 1; i < n; i++)
		{
			string u, v;
			cin >> u >> v;
			if (ma[u] == 0)
				ma[u] = ++cnt2;
			if (ma[v] == 0)
			{
				ma[v] = ++cnt2;
			}
			addedge(ma[v], ma[u]);//因为本题有明确的父子关系,建有向图即可
		}
		dfs(0);
		printf("%d ", dp[0][0]);//答案对应超级源点不选的状态差,或者也可以在1号点选和不选的状态中取最大值
		if (f[0][0])//如果是选最大值的话,这里应该对应判断最大的哪个状态是否唯一
			printf("No\n");
		else
		{
			printf("Yes\n");
		}
		ma.clear();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

timidcatt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值