题目大意:求满足如下条件的长度为n的数组数量:所有数字的范围在-m~m之间,任意连续的元素数量>1的区间的的区间和>=0
1<=n,m<=5000;
思路:要让所有区间元素和>=0, 我们只需在从左往右遍历时,确保所有后缀和都>=0,并且后缀和的最小值范围也是-m~m,所以我们假如前i个数都已合法,当前的后缀和最小值为j,那么我们放入的下一个数字k,一定满足k+j>=0,而这个k的取值又是一个连续区间,所以可以用差分优化,令0~2m分别对应-m,-m+1...m,m-1...0,然后对于j<m时,当前的后缀和可以转移到m~m+j,有dp[i+1][m]+=dp[i][j],dp[i+1][m+j+1]-=dp[i][j],j>=m时,可以转移到2*m-j~2*m,有dp[i+1][2*m-j]+=dp[i][j]最后对dp[n][j]求前缀和即可得到答案
//#include<__msvc_all_public_headers.hpp>
#include<bits/stdc++.h>
using namespace std;
const int N = 5005;
typedef long long ll;
ll dp[2][N * 2];
const ll MOD=998244353;
int main()
{
int n, m;
cin >> n >> m;
for (int i = 0; i <= 2 * m; i++)
{
dp[1][i] = 1;//第一个位置每个数都能放
}
int op = 1;//滚动数组优化
for (int i = 1; i < n; i++)
{
for (int j = 0; j <= 2 * m; j++)
{//负数和正数都是按绝对值从大到小排序的
if (j < m)
{//后缀和最小值是负数
dp[op^1][m] = (dp[op^1][m] + dp[op][j]) % MOD;
dp[op^1][j + m + 1] = (dp[op^1][j + m + 1] - dp[op][j] + MOD) % MOD;//转移到m~j+m
}
else
{
dp[op^1][2 * m - j] =(dp[op^1][2*m-j]+ dp[op][j])%MOD;//转移到2
*m-j~2*m
}
}
for (int j = 1; j <= 2 * m; j++)
{//求差分数组前缀和
dp[op^1][j] = (dp[op^1][j] + dp[op^1][j - 1]) % MOD;
}
for (int j = 0; j <= 2 * m; j++)
{//清空滚筒
dp[op][j] = 0;
}
op ^= 1;//滚到下一个桶
}
ll ans = 0;
for (int i = 0; i <= 2 * m; i++)
{//最后一次求出的前缀和即为答案
ans = (ans + dp[op][i]) % MOD;
}
cout << ans << endl;
return 0;
}