题目大意:有一个n个点的图,求每个点如果被删除后,图中剩余连通块的数量
1<=n<=1e4
思路:也就是求每一个割点出现在几个双联通分量(没有割点的图)中,找双连通分量也是用tarjan,dfn[u]表示u是第几个遍历到的点,low[u]表示从u出发在不经过父子边的情况下能到达的最早的祖先的dfn值,而如果一个点是割点,那么在不经过该点的情况下无法到达该点的祖先也就是low[v]>=dfn[u],注意特判起始点的情况,它可能是假割点
//#include<__msvc_all_public_headers.hpp>
#include<bits/stdc++.h>
using namespace std;
const int N = 1e4 + 5;
int head[N], head2[N];
struct Edge
{
int v, next;
}e[N*10];
int cnt = 0;
int n,m;
int dfn[N];
void addedge(int u, int v)
{
e[++cnt].v = v;
e[cnt].next = head[u];
head[u] = cnt;
}
struct Node
{
int id, cn;
}node[N];
int tot = 0;
void init()
{
tot = 0;
cnt = 0;
for (int i = 0; i <= n; i++)
{
node[i].id = i;
node[i].cn = 1;//答案至少是1
head[i] = -1;
dfn[i] = 0;
}
}
int tarjan(int u,int fa)
{
int lowu = dfn[u] = ++tot;
int child = 0;
for (int i = head[u]; ~i; i = e[i].next)
{
int v = e[i].v;
if (!dfn[v])
{
child++;
int lowv = tarjan(v, u);
lowu = min(lowu, lowv);
if (lowv >= dfn[u])
{//该点是割点
node[u].cn++;
}
}
else if (dfn[v] < dfn[u] && v != fa)
{
lowu = min(lowu, dfn[v]);
}
}
if (fa < 0 && child == 1)
{//假割点
node[u].cn = 1;
}
return lowu;
}
bool cmp(Node a, Node b)
{
return a.cn == b.cn ? a.id<b.id : a.cn>b.cn;
}
void solve()
{
init();
int u, v;
while(cin>>u>>v)
{
if (u == -1 && v == -1)
{
break;
}
addedge(u, v);
addedge(v, u);
}
tarjan(0, -1);
sort(node, node + n, cmp);
for (int i = 0; i < m; i++)
{
cout << node[i].id << " " << node[i].cn << endl;
}
cout << endl;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int t;
//cin >> t;
while (cin>>n>>m)
{
if (!n&&!m)
{
break;
}
solve();
}
return 0;
}