中文句法分析及LTP使用

目录

一、中文句法分析内容概述

二、基于Python的LTP句法分析

1、LTP基础

2、pyltp安装

3、pyltp实现句法分析

三、基于C++的LTP句法分析

1、LTP源码和模型

2、LTP的C++源码编译及测试

3、在Linux下使用动态库生成可执行程序

4、 构建基于LTP的句法分析类Parsing

5、使用Parsing类实现句法分析

四、LTP标注集参考

1、词性标注集

2、命名实体识别标注集

3、依存句法关系

4、语义角色类型


今天是1024,首先,祝大家节日快乐!                                             中文句法分析,先分析下面的一句话再进入正题哈哈:博客技术交流加QQ群:955817470

分析结果如下:

从分析结果我们可以看到每个词的词性以及句法结构,比如:交流和加这两个词构成了主谓关系(SBV),加和群这两个词构成了动宾关系(VOB),通过该结果可以分析句子的组成成分等。这个其实就是依存句法分析的一个例子,接下来看正文 ……

一、中文句法分析内容概述

主要任务:

  • 词法分析:分句、分词、词性标注、命名实体识别
  • 句法分析:依存句法分析
  • 语义分析:语义角色标注、语义依存分析

1、分句

 一般可以根据标点符号正则表达式进行分句。

2、分词

中文分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词。分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。

3、词性标注

词性(part-of-speech)是词汇基本的语法属性,通常也称为词性。

词性标注(part-of-speech tagging)又称为词类标注或者简称标注,是指为分词结果中的每个单词标注一个正确的词性的程序,也即确定每个词是名词、动词、形容词或者其他词性的过程。词性标注是很多NLP任务的预处理步骤,如句法分析,经过词性标注后的文本会带来很大的便利性,但也不是不可或缺的步骤。

词性标注主要可以分为基于规则和基于统计的方法,下面列举几种统计方法:基于最大熵的词性标注、基于统计最大概率输出词性、基于HMM的词性标注。

词性标注的应用:句法分析预处理、词汇获取预处理、信息抽取预处理。

4、命名实体识别

命名实体识别(Named Entity Recognition,NER)是将文本中的元素分成预先定义的类,如人名、地名、 机构名、时间、货币等等。作为自然语言的承载信息单位,命名实体识别 属于文本信息处理的基础的研究领域,是信息抽取、信息检索、机器翻译、 问答系统等多种自然语言处理技术中必不可少的组成部分。

5、依存句法分析

依存语法 (Dependency Parsing, DP) 通过分析语言单位内成分之间的依存关系揭示其句法结构。 直观来讲,依存句法分析识别句子中的“主谓宾”、“定状补”这些语法成分,并分析各成分之间的关系。

6、语义角色标注

语义角色标注(Semantic Role Labeling,SRL)是一种浅层的语义分析技术,标注句子中某些短语为给定谓词的论元 (语义角色) ,如施事、受事、时间和地点等。其能够对问答系统、信息抽取和机器翻译等应用产生推动作用。

7、语义依存分析

语义依存分析 (Semantic Dependency Parsing, SDP),分析句子各个语言单位之间的语义关联,并将语义关联以依存结构呈现。 使用语义依存刻画句子语义,好处在于不需要去抽象词汇本身,而是通过词汇所承受的语义框架来描述该词汇,而论元的数目相对词汇来说数量总是少了很多的。

语义依存分析目标是跨越句子表层句法结构的束缚,直接获取深层的语义信息。

二、基于Python的LTP句法分析

1、LTP基础

LTP提供了一系列中文自然语言处理工具,用户可以使用这些工具对于中文文本进行分词、词性标注、句法分析等工作。

LTP官网  ;LTP GitHub ;pyltp使用教程

2、pyltp安装

环境:Linux

准备:LTP模型下载

安装pyltp:pip install pyltp

注:安装成功之后,尝试import pyltp,可能报错:undefined symbol: _ZTISt19__codecvt_utf8_baseIwE

解决方法如下(参看方法):

cd ~/anaconda2/lib
rm libstdc++.so.6.0.19
ln -s /usr/lib/x86_64-linux-gnu/libstdc++.so.6 libstdc++.so.6.0.19

3、pyltp实现句法分析

pyltp实现分句、分词、词性标注、命名实体识别、依存句法分析、语义角色标注,代码如下(ltp_analyze.py):

#!/usr/bin/env python
# coding=utf-8
import importlib,sys
importlib.reload(sys)
import os
from pyltp import SentenceSplitter,Segmentor, Postagger, NamedEntityRecognizer, Parser,SementicRoleLabeller,CustomizedSegmentor
#分句
def sentence_split(text):
    sents = SentenceSplitter.split(text)  # 分句
    print('\n'.join(sents))

class LtpModelAnalysis(object):
    def __init__(self, model_dir="/mnt/f/model/ltp_model/ltp_data_v3.4.0/"):
        self.segmentor = Segmentor()
        self.segmentor.load(os.path.join(model_dir, "cws.model"))  #加载分词模型
        #使用自定义词典
        #self.segmentor.load_with_lexicon(os.path.join(model_dir, "cws.model"), 'lexicon')  # 加载分词模型,第二个参数是外部词典文件路径
        #使用个性化分词模型  #pyltp支持使用用户训练好的个性化模型
        #customized_segmentor = CustomizedSegmentor()  # 初始化实例
        #customized_segmentor.load(os.path.join(model_dir, "cws.model"), 'customized_model')  # 加载模型,第二个参数是增量模型的路径
        #个性化分词模型的同时也可以使用外部词典
        #customized_segmentor = CustomizedSegmentor()  # 初始化实例
        #customized_segmentor.load_with_lexicon(os.path.join(model_dir, "cws.model"), 'customized_model','lexicon')

        self.postagger = Postagger()
        self.postagger.load(os.path.join(model_dir, "pos.model"))  #加载词性标注模型

        self.recognizer=NamedEntityRecognizer()
        self.recognizer.load(os.path.join(model_dir, "ner.model")) #加载命名实体识别模型

        self.parser = Parser()
        self.parser.load(os.path.join(model_dir, "parser.model"))  #加载依存句法分析模型

        self.labeller=SementicRoleLabeller()
        self.labeller.load(os.path.join(model_dir, "pisrl.model")) #加载语义角色标注模型

    def analyze(self, text):
        #分词
        words = self.segmentor.segment(text)
        print( '\t'.join(words))

        #词性标注
        postags = self.postagger.postag(words)
        print( '\t'.join(postags))

        #命名实体识别
        netags = self.recognizer.recognize(words, postags)  # 命名实体识别
        print('\t'.join(netags))

        #句法分析
        arcs = self.parser.parse(words, postags)
        print("\t".join("%d:%s" % (arc.head, arc.relation) for arc in arcs)) #arc.head 表示依存弧的父节点词的索引,arc.relation 表示依存弧的关系。
        arcs_list=[]

        #语义角色标注
        roles = self.labeller.label(words, postags, arcs) #arcs 使用依存句法分析的结果
        for role in roles:
            print(role.index, "".join(["%s:(%d,%d)" % (arg.name, arg.range.start, arg.range.end) for arg in role.arguments]))

    def release_model(self):
        # 释放模型
        self.segmentor.release()
        self.postagger.release()
        self.recognizer.release()
        self.parser.release()
        self.labeller.release()

if __name__ == '__main__':
    text="你觉得我的博客写的怎么样?进一步交流请加QQ群:955817470"
    ltp = LtpModelAnalysis()
    ltp.analyze(text)
    ltp.release_model()
    #sentence_split(text)

分词、词性标注、命名实体识别、依存句法分析、语义角色标注运行结果如下

(1)依存句法结果分析

2:SBV   0:HED   5:ATT   3:RAD   6:SBV   8:ATT   6:RAD   2:VOB   2:WP    11:ADV  2:COO   11:COO  12:VOB  15:ATT  13:VOB 15:WP    13:COO
  • arc.head 表示依存弧的父节点词的索引。ROOT节点的索引是0,第一个词开始的索引依次为1、2、3…
  • arc.relation 表示依存弧的关系。

(2)语音角色标注结果分析

1 A0:(0,0)A1:(2,7)
5 A1:(2,4)
10 ADV:(9,9)A1:(13,15)
11 A2:(12,16)
12 A1:(13,15)
  • 第一个词开始的索引依次为0、1、2…
  • 返回结果 roles 是关于多个谓词的语义角色分析的结果。由于一句话中可能不含有语义角色,所以结果可能为空。
  • role.index 代表谓词的索引, role.arguments 代表关于该谓词的若干语义角色。
  • arg.name 表示语义角色类型,arg.range.start 表示该语义角色起始词位置的索引,arg.range.end 表示该语义角色结束词位置的索引。

三、基于C++的LTP句法分析

1、LTP源码和模型

环境:Linux         LTP源码下载           LTP模型下载

2、LTP的C++源码编译及测试

./configure
make

编译成功后,会在 bin 目录下生成以下二进制程序

程序名说明
ltp_testLTP主程序
ltp_serverLTP Server

bin/examples 目录下生成以下二进制程序

程序名说明
cws_cmdline分词模块命令行程序
pos_cmdline词性标注模块命令行程序
ner_cmdline命名实体识别模块命令行程序
par_cmdline依存句法分析模块命令行程序

examples 目录下有C++源码和Makefile文件

使用pos_cmdline完成词性标注测试  

$ cat input
这 是 测试 样本 ,中文 句法 分析 。
$ cat input | ./bin/examples/pos_cmdline --postagger-model ./ltp_model/pos.model
TRACE: Model is loaded
TRACE: Running 1 thread(s)
WARN: Cann't open file! use stdin instead.
这_r    是_v    测试_v  样本_n  ,中文_nz       句法_n  分析。_v
TRACE: consume 0.162231 seconds.

3、在Linux下使用动态库生成可执行程序

(1)分词cws.cpp代码如下

#include <iostream>
#include <string>
#include "ltp/segment_dll.h"

int main(int argc, char * argv[])
{
  if (argc < 2)    //命令行参数,没有分词模型的情况下输出
  {
    std::cerr << "cws [model path] [lexicon_file]" << std::endl;
    return 1;
  }
  void * engine = 0;     //声明一个指向模型的指针
  if (argc == 2)     //第一个命令行参数,为分词模型
  {
    engine = segmentor_create_segmentor(argv[1]);  //分词接口,初始化分词器
  } 
  else if (argc == 3) //第二个命令行参数,可以外加词典文件
  {
    engine = segmentor_create_segmentor(argv[1], argv[2]); //分词接口,初始化分词器
  }
  if (!engine) 
  {
    return -1;
  }
  std::vector<std::string> words;   //将分词结果存入vector中
  //分词的文本
  const char * suite[2] = {
    "What's wrong with you? 别灰心! http://t.cn/zQz0Rn", "台北真的是天子骄子吗?",};
  
  for (int i = 0; i < 2; ++ i) {
    words.clear();
    int len = segmentor_segment(engine, suite[i], words);  //分词接口,对句子分词。
    for (int i = 0; i < len; ++ i) {
      std::cout << words[i];
      if (i+1 == len) std::cout <<std::endl;
      else std::cout<< "|";
    }
  }
  segmentor_release_segmentor(engine);   //分词接口,释放分词器
  return 0;
}

 (2)生成cws可执行程序

将下载的LTP置于 ltp-project 目录下,编译命令如下

$ g++ -o cws cws.cpp -I ../include/ -I ../thirdparty/boost/include/ -Wl,-dn -L ../lib/ -lsegmentor -lboost_regex -Wl,-dy

 运行生成的可执行程序  

$ cws ../ltp_model/cws.model

运行结果如下:

  • What's|wrong|with|you|?|别|灰心|!|Sina Visitor System
  • 台北|真|的|是|天子骄子|吗|?

4、 构建基于LTP的句法分析类Parsing

#include <iostream>
#include <vector>
#include "ltp/segment_dll.h"
#include "ltp/postag_dll.h"
#include "ltp/parser_dll.h"
using namespace std;

//构建LTP句法分析类
class Parsing
{
    public:
		void* cws_engine = 0;
		void* pos_engine = 0;
		void* par_engine = 0;
		vector<string> words;
		vector<string> postags;
		vector<int> heads;
		vector<string> deprels;
    public:
		void get_models(char* cws, char* pos, char* par);
		void get_words(string str);
		void get_postags(string str);
		void get_parsing(string str);
		void release_model();

};
//加载模型文件
void Parsing::get_models(char* cws,char* pos,char* par)
{
	cws_engine = segmentor_create_segmentor(cws);
	pos_engine = postagger_create_postagger(pos);
	par_engine = parser_create_parser(par);
}
//分词
void Parsing::get_words(string str)
{
	words.clear();
	segmentor_segment(cws_engine, str, words);
}
//词性标注
void Parsing::get_postags(string str)
{
	words.clear();
	postags.clear();
	segmentor_segment(cws_engine, str, words);
	postagger_postag(pos_engine, words, postags);
}
//句法分析 
void Parsing::get_parsing(string str)
{
	words.clear();
	postags.clear();
	heads.clear();
	deprels.clear();
	segmentor_segment(cws_engine, str, words);
	postagger_postag(pos_engine, words, postags);
	parser_parse(par_engine, words, postags, heads, deprels);
}
//释放模型
void Parsing::release_model()
{
	segmentor_release_segmentor(cws_engine);
	postagger_release_postagger(pos_engine);
	parser_release_parser(par_engine);
}

int main(int argc, char * argv[]) 
{
	Parsing pars;
	//pars.get_models("/mnt/f/ltp_project/ltp_model/cws.model","/mnt/f/ltp_project/ltp_model/pos.model","/mnt/f/ltp_project//ltp_model/parser.model");
	pars.get_models(argv[1],argv[2],argv[3]);
	//cout<<"测试代码"<<endl;
	pars.get_parsing("Welcome to my blog!");
	cout<<pars.words.size()<<endl;
	for (int i = 0; i < pars.words.size(); i++)
	{
		cout << pars.words[i]<<'\t'<<pars.postags[i]<<'\t'<<pars.heads[i]<<'\t'<<pars.deprels[i]<< endl;
		//cout << pars.postags[i] << endl;
		//cout << pars.heads[i] << endl;
		//cout << pars.deprels[i] << endl;
	}
	pars.release_model();
	return 0;
}

5、使用Parsing类实现句法分析

生成Parsing可执行程序

$ g++ -o parsing parsing.cpp -I ../include/ -I ../thirdparty/boost/include/ -Wl,-dn -L ../lib/ -lsegmentor -lpostagger -lparser -lboost_regex -Wl,-dy

运行Parsing可执行程序

$ ./parsing ../ltp_model/cws.model ../ltp_model/pos.model ../ltp_model/parser.model

 运行结果如下

四、LTP标注集参考

1、词性标注集

LTP 使用的是863词性标注集,其各个词性含义如下表

TagDescriptionExampleTagDescriptionExample
aadjective美丽niorganization name保险公司
bother noun-modifier大型, 西式nllocation noun城郊
cconjunction和, 虽然nsgeographical name北京
dadverbnttemporal noun近日, 明代
eexclamationnzother proper noun诺贝尔奖
gmorpheme茨, 甥oonomatopoeia哗啦
hprefix阿, 伪ppreposition在, 把
iidiom百花齐放qquantity
jabbreviation公检法rpronoun我们
ksuffix界, 率uauxiliary的, 地
mnumber一, 第一vverb跑, 学习
ngeneral noun苹果wppunctuation,。!
nddirection noun右侧wsforeign wordsCPU
nhperson name杜甫, 汤姆xnon-lexeme萄, 翱

2、命名实体识别标注集

LTP 采用 BIESO 标注体系。B 表示实体开始词,I表示实体中间词,E表示实体结束词,S表示单独成实体,O表示不构成命名实体。

LTP 提供的命名实体类型为:人名(Nh)、地名(Ns)、机构名(Ni)

标记含义
O这个词不是NE
S这个词单独构成一个NE
B这个词为一个NE的开始
I这个词为一个NE的中间
E这个词位一个NE的结尾

3、依存句法关系

关系类型TagDescriptionExample
主谓关系SBVsubject-verb我送她一束花 (我 <– 送)
动宾关系VOB直接宾语,verb-object我送她一束花 (送 –> 花)
间宾关系IOB间接宾语,indirect-object我送她一束花 (送 –> 她)
前置宾语FOB前置宾语,fronting-object他什么书都读 (书 <– 读)
兼语DBLdouble他请我吃饭 (请 –> 我)
定中关系ATTattribute红苹果 (红 <– 苹果)
状中结构ADVadverbial非常美丽 (非常 <– 美丽)
动补结构CMPcomplement做完了作业 (做 –> 完)
并列关系COOcoordinate大山和大海 (大山 –> 大海)
介宾关系POBpreposition-object在贸易区内 (在 –> 内)
左附加关系LADleft adjunct大山和大海 (和 <– 大海)
右附加关系RADright adjunct孩子们 (孩子 –> 们)
独立结构ISindependent structure两个单句在结构上彼此独立
核心关系HEDhead指整个句子的核心

4、语义角色类型

语义角色类型说明
ADVadverbial, default tag ( 附加的,默认标记 )
BNEbeneficiary ( 受益人 )
CNDcondition ( 条件 )
DIRdirection ( 方向 )
DGRdegree ( 程度 )
EXTextent ( 扩展 )
FRQfrequency ( 频率 )
LOClocative ( 地点 )
MNRmanner ( 方式 )
PRPpurpose or reason ( 目的或原因 )
TMPtemporal ( 时间 )
TPCtopic ( 主题 )
CRDcoordinated arguments ( 并列参数 )
PRDpredicate ( 谓语动词 )
PSRpossessor ( 持有者 )
PSEpossessee ( 被持有 )

参考:

句法分析可视化软件

腾讯文智中文语义平台

LTP使用文档 

本人博文NLP学习内容目录:

一、NLP基础学习

1、NLP学习路线总结

2、TF-IDF算法介绍及实现

3、NLTK使用方法总结

4、英文自然语言预处理方法总结及实现

5、中文自然语言预处理方法总结及实现

6、NLP常见语言模型总结

7、NLP数据增强方法总结及实现

8、TextRank算法介绍及实现

9、NLP关键词提取方法总结及实现

10、NLP词向量和句向量方法总结及实现

11、NLP句子相似性方法总结及实现

12、NLP中文句法分析

二、NLP项目实战

1、项目实战-英文文本分类-电影评论情感判别

2、项目实战-中文文本分类-商品评论情感判别

3、项目实战-XGBoost与LightGBM文本分类

4、项目实战-TextCNN文本分类实战

5、项目实战-Bert文本分类实战

6、项目实战-NLP中文句子类型判别和分类实战

交流学习资料共享欢迎入群:955817470(群一),801295159(群二)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

探模之翼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值