看过好多人的博客,感觉要么是太复杂要么就是太不容易理解。
那就亲自动手写一个通俗易懂的。
先定义两个数组,第一个数组为主,用第二个数组来匹配第一个,看能有多少可以对应上的。
所以,其实第一个数组的内容可以暂时不考虑,当知道它对应了第二个数组的哪个数字就BINGO了。
顺着这个思路继续想就可以得到以下思路:
把第一个数组离散化(记录第一个数组变成什么)后的数组是满足上升的关系。
现在的问题就变成了求一个最长不下降序列。
二话不说上代码。
------------------------------------------一道华丽的分割线------------------------------------------
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cctype>
#define rg register
#define int long long
using namespace std;
inline int read(){
rg int s=0,f=0;
rg char ch=getchar();
while(!isdigit(ch)) f|=(ch=='-'),ch=getchar();
while(isdigit(ch)) s=(s<<1)+(s<<3)+(ch^48),ch=getchar();
return f?-s:s;
}
int n,len;
const int MAX=100010;
int a1[MAX],a2[MAX],f[MAX],b[MAX],c[MAX];
signed main(){
n=read();
for(rg int i=1;i<=n;++i){
a1[i]=read();
c[a1[i]]=i;
}
for(rg int i=1;i<=n;++i){
a2[i]=read();
}
for(rg int i=1;i<=n;++i){
if(c[a2[i]]>b[len]){
b[++len]=c[a2[i]];
f[i]=len;
continue;
}
int k=lower_bound(b+1,b+len+1,c[a2[i]])-b;
b[k]=c[a2[i]];
f[i]=k;
}
printf("%d\n",len);
return 0;
}