点集

由不等式$|z-z_{0}|<\rho$所确定的平面点集,就是以$z_{0}$为心,半径为$\rho$的圆。

称为点$z_{0}$的$\rho$-邻域,常记为$N_{\rho}(z_{0})$,并称$0<|z-z_{0}|<\rho$为点$z_{0}$的去心邻域,常记为$N_{\rho}(z_{0})-\{z_{0}\}$.

聚点:若平面上一点$z_{0}$(不必属于E)的任意邻域都有E的无穷多个点,则称$z_{0}$为E的聚点,或极限点。

孤立点:$z_{0}$属于E,但非E的聚点,则称$z_{0}$为E的孤立点

外点:若$z_{0}$不属于E,且不是E的聚点

点集E的全部聚点集合记作$E'$

若点集E的每个聚点都属于E,$E'\subseteq E$则称E为闭集,若点$z_{0}$存在一邻域全部包含在E内,则称$z_{0}$为E的内点

若点集E的所有点都为内点,则称E为开集

若$z_{0}的任一邻域都同时有属于点集E的点且又不属于E的点,则称$z_{0}$为E的边界点

点集E的全部边界点所组成的点集称为E的边界。记为$\partial E$

孤立点都是边界点。

有界集:若有正常数M,使得E中的任一点$z$,都有$|z|\leq M$.

无界集

聚点的一些等价定义:

1)$z_{0}$为E的聚点或极限点

2)$z_{0}$的任一邻域含有E的无穷多个点

3)$z_{0}$的任一邻域含有E中异于$z_{0}$的一个点

4)$z_{0}$的任一邻域含有E中两个点

5)可从E中取出收敛于$z_{0}$点列

区域:1.开集,2.任意两点可用全在D中的折线连接

闭域:区域D加上他的边界C

区域都是开的,不包含边界点。

转载于:https://www.cnblogs.com/liulex/p/11299386.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值