写在前面:感觉越来越菜了
vp链接Panasonic Programming Contest 2024(AtCoder Beginner Contest 375) - AtCoder
A - Seats
思路
按照题意模拟过程就可以
代码
void solve() {
ll n;
string s;
cin >> n >> s;
s = ' ' + s;
ll ans = 0;
for (int i = 1; i <= n - 2; i++) {
if (s[i + 1] == '.' && s[i + 2] == '#' && s[i] == '#') {
ans++;
}
}
cout << ans;
}
B- Traveling Takahashi Problem
思路
也是按照题意模拟就行,因为要从原点出发,所以从下标0遍历到n即可
代码
void solve() {
ll n;
cin >> n;
vector<vector<ll>>arr(n + 4, vector<ll>(3));
double ans = 0;
for (int i = 1; i <= n; i++) {
cin >> arr[i][1] >> arr[i][2];
}
for (int i = 0; i <= n; i++) {
ans = ans + sqrtl((arr[i][1] - arr[i + 1][1]) * (arr[i][1] - arr[i + 1][1]) + (arr[i + 1][2] - arr[i][2]) * (arr[i + 1][2] - arr[i][2]));
}
cout << fixed << setprecision(20) << ans;
}
C-Spiral Rotation
思路
这个题我采取了一个比较笨的方法,我们在自己打表的过程中会发现一个特点,就是最外层的边旋转了90度,往里一层就又旋转了一层,那么我是暴力求出旋转4次的答案,判断在第几层就输出哪个答案就可以了
代码
void solve() {
ll n;
cin >> n;
vector<vector<char>>arr(n + 4, vector<char>(n+2));
vector<vector<char>>brr(n + 4, vector<char>(n + 2));
vector<vector<char>>crr(n + 4, vector<char>(n + 2));
vector<vector<char>>drr(n + 4, vector<char>(n + 2));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> arr[i][j];
brr[j][n - i + 1] = arr[i][j];//1
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
crr[j][n - i + 1] = brr[i][j];//2
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
drr[j][n - i + 1] = crr[i][j];//3
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
ll minn = min(i, j);
minn = min(minn, n - i + 1);
minn = min(minn, n - j + 1);
if (minn % 4 == 1) {
cout << brr[i][j];
}
else if (minn % 4 == 2) {
cout << crr[i][j];
}
else if (minn % 4 == 3) {
cout << drr[i][j];
}
else {
cout << arr[i][j];
}
}
cout << endl;
}
}
D-ABA
思路
一个非常板子的计数题,我们用map去储存每个相同的字符出现的位置,那么我们从头到尾去查找位置的过程中,我们实际上就是去判断每个相同的字符去当边上的两个A,中间有多少B就是答案,但是暴力明显会爆时,我们去找每个数字出现的答案,发现对于当前的A,假设当前序列为AAA,中间的A的价值是前面A的数量去乘以后面A的数量,对于区间来说也是相同的
代码
void solve() {
map<char, vector<ll>>arr;
string s;
cin >> s;
s = ' ' + s;
for (int i = 1; i <= s.length()-1; i++) {
arr[s[i]].push_back(i);
}
ll ans = 0;
for (auto now : arr) {
vector<ll>brr(now.second.size() + 3);
ll a = now.second.size();
ll top = 0;
for (auto now2 : arr[now.first]) {
brr[++top] = now2;
}
for (int i = 1; i < top; i++) {
ans = ans + (brr[i + 1] - brr[i]-1) * (i)*(top-i);
ans = ans + (i - 1) * (top - i);
}
}
cout << ans;
}
E-3 Team Division
思路
比较明显的一道dp题,但是赛时不会,破防,
首先如果sum%3!=0是一定没有答案的,对于其他的,我们实际上去实现让a和b这两组都能够到sum/3的答案就可以了,问题也就转化成dp[sum/3][sum/3]的最小值,如果能知道这个思路的转化,剩下的问题就简单了,跑一边0-1背包就可以了
代码
void solve() {
ll sum = 0;
ll n;
cin >> n;
vector<vector<ll>>arr(n + 2, vector<ll>(4));
for (int i = 1; i <= n; i++) {
cin >> arr[i][2] >> arr[i][1];
sum = sum + arr[i][1];
}
if (sum % 3 != 0) {
cout << "-1";
return;
}
vector<vector<ll>>dp(sum / 3 + 2, vector<ll>(sum / 3 + 2));
sum = sum / 3;
for (int i = 0; i <= sum; i++) {
for (int j = 0; j <= sum; j++) {
dp[i][j] = 1e18;
}
}
dp[0][0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = sum; j >= 0; j--) {
for (int k = sum; k >= 0; k--) {
dp[j][k] = min((ll)1e18, dp[j][k] + (arr[i][2] != 3));
if (j >= arr[i][1]) {
dp[j][k] = min(dp[j][k], dp[j - arr[i][1]][k] + (arr[i][2] != 1));
}
if (k >= arr[i][1]) {
dp[j][k] = min(dp[j][k], dp[j][k - arr[i][1]] + (arr[i][2] != 2));
}
}
}
}
if (dp[sum][sum] >= 1e18) {
cout << "-1";
}
else {
cout << dp[sum][sum];
}
}
F-Road Blocked
思路
一道图论题,需要用到Warshall-Floyd 求全源最短路的算法,首先我们将所有的查询进行离线化,现在就是一个有很多条边的无相不一定连通图,我们用n3的算法求出所有点的相关的最短路,然后我们倒着去查询,也就是进行加边(x.y)的操作,对于每一次加边,我们需要更新所有点的最短路,对于点i,j而言,加边之后的最短路只有三种情况
1-原来的路径
2-从i-x再从y到j
3-从i-y再从x到i
就可以得出最后的答案
代码比较繁琐
代码
void solve() {
ll n, m, q;
cin >> n >> m >> q;
vector<vector<ll>>arr(m + 2, vector<ll>(6));
vector<vector<ll>>dp(n + 2, vector<ll>(n + 2));
for (int i = 1; i <= m; i++) {
ll a, b, c;
cin >> a >> b >> c;
arr[i][1] = a;
arr[i][2] = b;
arr[i][3] = c;
arr[i][4] = 1;
}
vector<vector<ll>>ans(q + 2, vector<ll>(8));
for (int i = 1; i <= q; i++) {
cin >> ans[i][1];
if (ans[i][1] == 2) {
cin >> ans[i][2] >> ans[i][3];
}
else {
cin >> ans[i][2];
arr[ans[i][2]][4] = 0;
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
dp[i][j] = 1e17;
}
}
for (int i = 1; i <= n; i++) {
dp[i][i] = 0;
}
for (int i = 1; i <= m; i++) {
if (arr[i][4] == 1) {
dp[arr[i][1]][arr[i][2]] = min(dp[arr[i][1]][arr[i][2]], arr[i][3]);
dp[arr[i][2]][arr[i][1]] = min(dp[arr[i][1]][arr[i][2]], arr[i][3]);// 建立双向边
}
}
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);
}
}
}
for (int i = q; i >= 1; i--) {
if (ans[i][1] == 2) {
ans[i][5] = dp[ans[i][2]][ans[i][3]];
}
else {
ll a = ans[i][2];
ll x = arr[a][1];
ll y = arr[a][2];
ll z = arr[a][3];
dp[x][y] = min(dp[x][y], z);
dp[y][x] = min(dp[y][x], z);
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
dp[j][k] = min(dp[j][k], dp[j][x] + z + dp[y][k]);
dp[j][k] = min(dp[j][k], dp[j][y] + z + dp[x][k]);
}
}
}
}
for (int i = 1; i <= q; i++) {
if (ans[i][1] == 2) {
//debug;
if (ans[i][5] >= 1e16) {
cout << "-1" << endl;
continue;
}
cout << ans[i][5] << endl;
}
}
}
g不是很会
701

被折叠的 条评论
为什么被折叠?



