简介
Spark的配置系统主要分为三个部分:第一个部分是控制Spark任务运行属性的,一般会影响到Spark的运行情况和任务性能;第二个部分是系统变量,可以配置一些运行需要的环境变量及运行参数;第三部分是日志部分,Spark通过log4j来记录任务日志,所以这部分是通过配置log4j来实现的。
Spark属性
Spark属性配置涵盖了任务运行时的大部分参数,并且可以根据不同的任务来实现不同的配置。这部分之前是依靠Java系统变量(也就是通过-D配置的变量)来实现的,但是自从0.9.0-incubating版本之后,这项任务就被一个单独的类SparkConf来承担了。SparkConf类中有很多预定义的配置项,一个简单的例子如下:
import org.apache.spark.{SparkContext, SparkConf}
/**
* Created with IntelliJ IDEA.
* User: Administrator
* Date: 14-3-27
* Time: 下午11:54
* To change this template use File | Settings | File Templates.
*/
object TestSpark {
def main(args: Array[String]) =
{
val conf = new SparkConf().setMaster("local").setAppName("testSparkConf")
val sc = new SparkContext(conf)
println(sc.textFile("d:/conf.txt").count)
}
}
这段代码最开始初始化并构建了一个SparkConf类的对象conf,使用其中的setMaster和setAppName方法将这个驱动程序的Master设为本地模式,将其名称设为testSparkConf。然后使用这个SparkConf类对象初始化了一个SparkContext类,将之前的配置项传递给sc,这样就可以控制驱动程序了。
conf.txt的内容如下:
aaa
b
cc
ddd
sc读取其中的内容,并使用count方法打印出它内容的行数,程序输出结果为:4
我们下载Spark的源码,在org.apache.spark包中找到SparkConf.sca