- 博客(10)
- 收藏
- 关注
转载 左神算法基础课笔记
认识时间复杂度常数时间的操作:一个操作如果和数据量没有关系,每次都是 固定时间内完成的操作,叫做常数操作。时间复杂度为一个算法流程中,常数操作数量的指标。常用O (读作big O)来表示。具体来说,在常数操作数量的表达式中, 只要高阶项,不要低阶项,也不要高阶项的系数,剩下的部分 如果记为f(N),那么时间复杂度为O(f(N))。评价一个算法流程的好坏,先看时间复杂度的指标,...
2019-05-09 00:02:00 423
转载 序列型动态规划
序列型动态规划给定一个序列动态规划方程f[i]中的下标i表示前i个元素a[0],a[1],...,a[i-1]的某种性质 -坐标型的f[i]表示以ai为结尾IDE某种性质初始化中,f[0]表示空序列的性质 -坐标型动态规划的初始条件f[0]就是指以a0为结尾的子序列的性质例题Paint House II题目分析...
2019-03-08 09:35:00 181
转载 Tomcat 解决jvm中文乱码,控制台乱码
解决方法打开tomcat/conf/目录修改logging.properties找到 java.util.logging.ConsoleHandler.encoding = utf-8这行 更改为 java.util.logging.ConsoleHandler.encoding = GBK原因控制台编码方式为GBK,windows默认编码集为GBK,由于...
2019-03-02 20:38:00 191
转载 1001 A+B Format
1001A+B Format(20 分)Calculatea+band output the sum in standard format -- that is, the digits must be separated into groups of three by commas (unless there are less than four digits)....
2019-02-19 11:55:00 169
转载 无根树转有根树
无根树的定义:离散数学中,无根树指无环连通无向图。由于树是图的子集,这一类图具有树的特征,但不具有树状的形式,没有特定的根节点,故称为无根树。任意选取图中某个点为根,均可将无根树转化成为有根树。有n个顶点的树具有以下3个特点:连通、不含圈、恰好包含n-1条边。具备上述3个特点中的任意两个,就可以推导出第3个。树是边数最多的无回路图,树是边数最少的连通图。用vector数组表示...
2018-04-24 23:42:00 762
转载 Weekly Contest 75题解
Q1. Rotate String(796)We are given two strings,AandB.Ashift onAconsists of taking stringAand moving the leftmost character to the rightmost position. For example, ifA = 'abcde', then...
2018-03-14 16:56:00 110
转载 前缀和与差分
前缀和其实可以把它理解为数学上的数列的前n项和(对于一个一维数组的前缀和)。我们定义对于一个数组a的前缀和数组s,s[i] = a[1]+a[2]+...+a[i].二维前缀和与一维前缀和类似,设s[i][j]表示所有a[i'][j']的和。(1≤i'≤i,1≤j'≤j)有一点像“矩形的面积”那样,把一整块区域的值都加起来。前缀和的用途一般用来求区...
2018-01-30 14:18:00 139
转载 C++标准库之stack
C++库以提供“模板”为主。所谓模板,是指不必预先制定类型的函数或类。我们可以借助STL(标准模板库Standard Template Library, STL)提供的高效算法来管理数据。为应对多种需求,STL为用户提供了多种名为容器(Container)的类,用于管理数据集合。在创建动态数组、表、栈、队列等数据结构时,我们只需要定义对应的容器,然后调用相应成员函数或算法...
2017-11-03 00:01:00 172
转载 逆波兰表示法
逆波兰表示发是一种将运算符写在操作数后面的描述程序(算式)的方法。举个例子,我们平常用中缀表示法描述的算式(1 + 2) * (5 + 4),改为逆波兰表示法之后则是1 2 + 5 4 + *。相较于中缀表示法,逆波兰表示法的优势在于不需要括号。 请输出以逆波兰表示法输入的算式的计算结果。输入 在1行中输入1个算式。相邻的符号(操作数或运算符)用...
2017-11-01 23:28:00 261
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人