自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 2050回顾(2)-AI时代下的创业

描述分析:聚焦于耦合物理机理与数据驱动的建模范式,通过嵌入地质、工程等领域的物理方程(如达西定律、岩石力学模型)约束A训练,并引入特征归因、因果推理等可解释性技术,揭示储层参数间的非线性关联与开发动态规律。从产品定义入手,先我到问题,然后结合问题,去探索整合出什么咩的技术,什么样为科学,什么样的商业磷式和人文素养,最后用创业的模式加逮项目成果落地。1. 前期资源:多参加AI相关竞赛与活动,多聆听业界前沿大佬的观察,尽可能的拓宽AI界的社交范围,尤其是加入活跃度高的,有派单资源或积极讨论AI前沿问题群聊。

2025-05-05 11:18:52 374

原创 # 2050回顾(1)-AI时代下的科研

还包括将人类专家的经验性知识、领域的第一性原理以归纳偏置(InductiveBias,例如对称性的考量等)的方式转变为基础模型模块的神经网络架构设计之中,这一功能可通过构建某种通用的神经网络架构设计语言来完成。但是,由于现实中的互动往往是成本高昂的(需要考虑到实验成本和犯错误成本),因此这一互动过程并非类似于具身智能那样频个如何干预世界以更好地获得信息的方案,再根据这繁而直接,它更应该以一种弱交互的方式来干预世界。但是,与人脑中的系统不同的是,该基础模型还包括了一定程度上的问题求解能力和实验设计能力。

2025-05-05 11:17:49 951

原创 【coze-ai-assistant】上手智能体

智能体的人设与回复逻辑定义了智能体的基本人设,此人设会持续影响智能体在所有会话中的回复效果。上面我们通过上传知识库文件,让智能体了解到我们自己,但是我们没有精力来总结出这样清晰完整的个人信息,我们希望他能通过对话学习到我们信息,而不是我们刻意的整理出来的。参考夸夸机器人,我们希望创建一个智能体,可以在和夸夸机器人对话时,可以给你正向的鼓励,抚慰你的情绪。前面我们实现了智能体的对话,但是我们希望智能体能有记忆点,更有针对性的与我们交流,下面就是为其添加知识,使他更懂我们。用户画像信息:用户的个人信息和喜好。

2025-03-16 23:27:26 1848

原创 【coze-ai-assistant】初识coze

设计用户界面: 扣子提供了丰富的组件和可视化的编排能力,支持以“拖、拉、拽”的方式快速构建应用,实现了所见即所得的应用开发体验。编排业务逻辑:你可以使用工作流来编排业务逻辑,并通过变量、插件、知识库、数据库等方式灵活的方式与本地数据或线上数据进行交互。应用:利用大模型技术开发的应用程序,具备完整业务逻辑和可视化界面,有明确输入输出,能完成如 AI 搜索、翻译工具等任务。发布应用:完成开发和测试后,你可以将构建好的 AI 应用发布到你选择的平台或渠道,让 AI 应用被更多的用户使用。确保应用运行符合预期。

2025-03-16 23:14:32 278

原创 4、决策树

后剪枝则表示在构造好一颗完整的决策树后,从最下面的节点开始,考虑该节点分支对模型的性能是否有提升,若无则剪枝,即将该节点标记为叶子节点,类别标记为其包含样本最多的类别。预剪枝处理使得决策树的很多分支被剪掉,因此大大降低了训练时间开销,同时降低了过拟合的风险,但另一方面由于剪枝同时剪掉了当前节点后续子节点的分支,因此预剪枝“贪心”的本质阻止了分支的展开,在一定程度上带来了欠拟合的风险。可以看出:决策树学习的关键在于如何选择划分属性,不同的划分属性得出不同的分支结构,从而影响整颗决策树的性能。

2025-02-25 12:25:22 1832

原创 3、线性模型

谈及线性模型,其实我们很早就已经与它打过交道,还记得高中数学必修3课本中那个顽皮的“最小二乘法”吗?这就是线性模型的经典算法之一:根据给定的(x,y)点对,求出一条与这些点拟合效果最好的直线y=ax+b,之前我们利用下面的公式便可以计算出拟合直线的系数a,b(3.1中给出了具体的计算过程),从而对于一个新的x,可以预测它所对应的y值。前面我们提到:在机器学习的术语中,当预测值为连续值时,称为“回归问题”,离散值时为“分类问题”。本篇先从线性回归任务开始,接着讨论分类和多分类问题。

2025-02-19 13:14:35 1614

原创 2 模型的评估与选择

简单分析图像,可以得知:当FN=0时,TN也必须0,反之也成立,我们可以画一个队列,试着使用不同的截断点(即阈值)去分割队列,来分析曲线的形状,(0,0)表示将所有的样本预测为负例,(1,1)则表示将所有的样本预测为正例,(0,1)表示正例全部出现在负例之前的理想情况,(1,0)则表示负例全部出现在正例之前的最差情况。限于篇幅,这里不再论述。但一般来说,曲线下的面积是很难进行估算的,所以衍生出了“平衡点”(Break-Event Point,简称BEP),即当P=R时的取值,平衡点的取值越高,性能更优。

2025-02-15 23:25:42 708

原创 机器学习笔记(第一章)

正如我们根据过去的经验来判断明天的天气,吃货们希望从购买经验中挑选一个好瓜,那能不能让计算机帮助人类来实现这个呢?机器学习正是这样的一门学科,人的“经验”对应计算机中的“数据”,让计算机来学习这些经验数据,生成一个算法模型,在面对新的情况中,计算机便能作出有效的判断,这便是机器学习。P:计算机程序在某任务类T上的性能。T:计算机程序希望实现的任务类。E:表示经验,即历史的数据集。若该计算机程序通过利用经验E在任务T上获得了性能P的改善,则称该程序对E进行了学习。

2025-02-13 01:49:33 325

原创 C语言: 数据类型的存储

整型:char 【1】(字符的本质是ASCⅡ)(char分为char/unsigned char/signed char)int【4】 long【x86:4/x64:8】 longlong(C99) 【8】(unsigned/signed)0x 0 0 0 0 0 0 1 5 --->0x 00 00 00 15(十六进制每二位为一节)(1)数值的表示形式。

2025-01-21 16:27:07 309

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除