从Bezier到NURBS曲线(1) - Bezier曲线

转载:http://blog.csdn.net/wangzhi0417/article/details/2002477


1.     前言

本人近来在学习曲线和曲面的知识,有一句话说得好:

It can’t be truly said that you understand something until you can explain it clearly to someone else!”

抱着学习和交流的精神,写此教程,希望能和大家一同成长和提高;

本教程的绝大数资料参考自:

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/notes.html

本教程将说明Bezier曲线、B样条和NURBS的要点,并在OpenGL中实现之,教程中将给出实现关键部分的代码;

2.     概述

CAD中,设计师需要设计出各种各样的曲线;数学中,曲线是通过各种各样的方程表示的,比如一条通过点A(0,0)B(1,1)的直线可以表示为:

y=x

或者用参数方程表示:

            P(u) = (1-u)A+tB

再比如一个通过原点(1,2)、半径为2的圆可以表示为:

            (x-1)^2 + (y-2)^2 = 4

或者用参数方程表示:

            x = 2cos(u)+1

            y = 2sin(u)+2

上面举例的是两种很简单的曲线,对于更复杂的曲线可以用更复杂的方程来表示(比如用高次多项式);

如果我们的设计师是一位数学家就好了,他可以根据自己的需要,设计出一个复杂的方程来表示自己想要的一条优美的曲线,但是事与愿违,设计师们往往想通过一种直观的方式来设计曲线,而不是利用方程。

因此,诸位科学家和工程师设计出了Bezier曲线、B样条和NURBS,下面是一个有四个控制点的Bezier曲线:

可以通过改变一个控制点的位置来改变曲线的形状,比如将上图曲线中左边第二个控制点往上移,就可以得到下面的曲线:

可以看到,这种曲线生成方式比较直观和灵活,我只需要放置控制点,然后调整控制点的位置来得到想要的曲线,这就避免了和复杂的数学方程打交道,岂不快哉?

Bezier曲线、B样条和NURBS都是根据控制点来生成曲线的,那么他们有什么区别了?简单来说,就是:

§  Bezier曲线中的每个控制点都会影响整个曲线的形状,而B样条中的控制点只会影响整个曲线的一部分,显然B样条提供了更多的灵活性;

§  BezierB样条都是多项式参数曲线,不能表示一些基本的曲线,比如圆,所以引入了NURBS,即非均匀有理B样条来解决这个问题;

 

Bezier曲线只是B样条的一个特例而已,而B样条又是NURBS的一个特例,它们的关系可以图示为:

 

 

下面我们从最基本的Bezier曲线讲起:

3.     Bezier曲线

3.1     举例

两个控制点

只有两个控制点PQBezier曲线是什么样子的?不难想像是线段PQ,如下图:

所以由控制点PQ产生的Bezier曲线的方程是:

            C(u) = (1-u)P + uQ       0<= u <= 1

曲线上参数为u的点是通过PQ的线性组合得到的。

三个控制点

如果想得到一条弯曲的曲线,两个控制点是不够的,加上一个控制点R,那么由控制点PQR生成的Bezier曲线又是什么样子的了?

假设生成的曲线为C(u),其中0<=u<=1,对应于某个特定的uC(u)如何计算出来了?

我们先在PQ上求一点A(u)

            A(u) = (1-u)P + uQ

QR上求一点B(u)

            B(u) = (1-u)Q + uR

再在生成的线段上求C(u)

            C(u) = (1-u)A(u) + uB(u)

对应于下图,用这种迭代的方法求出的点C(u)就是Bezier曲线上参数为u的点!

 

我们可以用OpenGL写一个程序输出这个Bezier曲线:

glBegin(GL_LINE_STRIP);

for i = 1 to 50

            u = i / 1.0;

            C(u) = (1-u)A(u)+uB(u);

            glVertex2f(C(u).x, C(u).y);

glEnd

输出的Bezier曲线如下图所示,曲线通过了点C(u)

可以将A(u)B(u)的公式代入C(u)得到:

            C(u) = (1-u)A(u)+uB(u)

                   = (1-u) [(1-u)P + uQ] + u [(1-u)Q + uR]

                   = (1-u)^2 P +2u(1-u) Q + u^2 R                        ( 0<=u<=1 )

上面的公式给出了从三个控制点PQR,求取参数u对于的曲线上点的方法,如果u=0,则C(0)=P;如果u=1,则C(1)=R,说明曲线通过PR,与上图的观察是一致的;

四个控制点

如果有四个控制点PQRS,给定一个参数值u0<=u<=1,如何求u对应的Bezier曲线上的点?还是用上述迭代的方法,最后得到的方程是:

            C(u) = (1-u)^3 P + 3u(1-u)^2 Q + 3u^2(1-u) R + u^3 S

绘制出来的曲线如下图所示:

大家重点要理解和记住这里迭代求C(u)的概念,这是一些重要算法的基础;

3.2     Bezier曲线的定义

定义:给定n+1个控制点P0P1P2...Pn,由它们定义的Bezier曲线为:

其中系数定义为:

由上面的定义得知Bezier曲线上对应于参数u的点C(u)是所有控制点的一个加权和;举三个控制点P0P1P2Bezier曲线为例子,我们已经知道它的方程是:

            C(u) = (1-u)^2 P0 +2u(1-u) P1 + u^2 P2                 ( 0<=u<=1 )

显然C(u)P0P1P2的一个加权和,这里的系数(权值)很重要:

            B2,0(u) = (1-u)^2

            B2,1(u) = 2u(1-u)

            B2,2(u) = u^2

Bn,i(u)叫做Bernstein多项式,满足0<=Bn,i(u) <=1

好了,如果现在我们要写一个程序,让用户用鼠标输入n+1个控制点P0P1...Pn,如何生成对应的Bezier曲线了?我们当然可以根据定义求一系列u对应的点C(u)

glBegin(GL_LINE_STRIP);

for i = 1 to 50

            u = i / 1.0;

            // evaluate C(u)

            C(u) = (0.0, 0.0);

            for each control point Pi

                        // calculate Bn,i(u) using definition

                        Bn,i(u) = ...

                        C(u) += Bn,i(u) * Pi;

            glVertex2f(C(u).x, C(u).y);

glEnd

这个方法有什么问题了?答案是这不是数值稳定的算法,因为Bn,i(u)的计算会引起浮点除法,从而导致误差的产生,为了解决这个问题,de Casteljau算法隆重登场了!

3.3     de Casteljau算法

de Casteljau算法要解决的问题清楚了吧?就是要根据n+1个控制点P0...Pn,和一个参数值u,求得对应于曲线上的点C(u),这个算法就是利用我们前面例子部分的迭代的方法求这个点;如下图示:

其中最左边的0i为控制点Pi,整个图显示了迭代的过程,迭代次数为n

de Casteljau算法的具体描述:

Input: array P[0:n] of n+1 control points and a real number u in [0,1]

Output: point on curve, C(u)

Working: point array Q[0:n]

for i=0 to n do

            Q[i] = P[i]

for k=1 to n do          // the times of recursion is n!

            for i=0 to n-k do

                        Q[i] = (1-u)Q[i] + uQ[i+1]

return Q[0];

3.4     示例程序

我写了一个生成Bezier曲线的小程序,用户通过点击鼠标确定控制点,当控制点的数目大于2的时候生成曲线,程序很容易懂,只有一个地方需要注意:

在设置裁剪区域的时候,需要这样调用:

glOrtho(0, windowWidth, 0, windowHeight, -10.0, 10.0);

其中windowWidthwindowHeight要和在指定窗口大小的参数保持一致:

glutInitWindowSize(windowWidth,windowHeight);

 源文件:deCasteljau.h Bezier_Basic.cpp

好的,到现在我已经完成了Bezier曲线的介绍,下面我们将进入最为复杂的B样条曲线;


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值