pytorch实现CNN卷积神经网络口罩识别

环境

  • PyCharm Community Edition 2021.3.1
  • Pytorch

代码实现

CNN卷积网络代码

import torch
from torch import nn
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
from torch.utils.data import DataLoader
from PIL import Image
import matplotlib.pyplot as plt


class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.layer1 = nn.Sequential(nn.Conv2d(3,16,3,padding=1),          # 第一个卷积层,输入通道数3,输出通道数16,卷积核大小3*3
                                    nn.ReLU(True),                        # 第一次卷积结果经过ReLU激活函数处理
                                    nn.MaxPool2d(kernel_size=2, stride=2) # 第一次池化,池化大小2*2,方式Max pooling
                                    )
        self.layer2 = nn.Sequential(nn.Conv2d(16,16,3,padding=1),
                                    nn.ReLU(True),
                                    nn.MaxPool2d(kernel_size=2, stride=2)
                                  )
        self.fc = nn.Sequential(nn.Linear(56 * 56 * 16, 128),# 第一个全连接层,线性连接,输入节点数56*56*16,输出节点数128
                                nn.ReLU(True),
                                nn.Linear(128, 64),# 第二个全连接层,线性连接,输入节点数128,输出节点数64
                                nn.ReLU(True),
                                nn.Linear(64, 2)# 第三个全连接
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值