程序员面试题精选(02)-设计包含min函数的栈

题目:定义栈的数据结构,要求添加一个min函数,能够得到栈的最小元素。要求函数min、push以及pop的时间复杂度都是O(1)。 分析:这是去年google的一道面试题。
我看到这道题目时,第一反应就是每次push一个新元素时,将栈里所有逆序元素排序。这样栈顶元素将是最小元素。但由于不能保证最后push进栈的元素最先出栈,这种思路设计的数据结构已经不是一个栈了。
在栈里添加一个成员变量存放最小元素(或最小元素的位置)。每次push一个新元素进栈的时候,如果该元素比当前的最小元素还要小,则更新最小元素。
乍一看这样思路挺好的。但仔细一想,该思路存在一个重要的问题:如果当前最小元素被pop出去,如何才能得到下一个最小元素?
因此仅仅只添加一个成员变量存放最小元素(或最小元素的位置)是不够的。我们需要一个辅助栈。每次push一个新元素的时候,同时将最小元素(或最小元素的位置。考虑到栈元素的类型可能是复杂的数据结构,用最小元素的位置将能减少空间消耗)push到辅助栈中;每次pop一个元素出栈的时候,同时pop辅助栈。
参考代码:

C++代码 复制代码
  1. #include <deque>   
  2. #include <assert.h>   
  3. template <typename T> class CStackWithMin   
  4. {   
  5. public:   
  6.        CStackWithMin(void) {}   
  7.       virtual ~CStackWithMin(void) {}   
  8.        T& top(void);   
  9.       const T& top(voidconst;   
  10.   
  11.       void push(const T& value);   
  12.       void pop(void);   
  13.   
  14.       const T& min(voidconst;   
  15.   
  16. private:   
  17.       T> m_data;               // the elements of stack   
  18.       size_t> m_minIndex;      // the indices of minimum elements   
  19. };   
  20.   
  21. // get the last element of mutable stack   
  22. template <typename T> T& CStackWithMin<T>::top()   
  23. {   
  24.       return m_data.back();   
  25. }   
  26.   
  27. // get the last element of non-mutable stack   
  28. template <typename T> const T& CStackWithMin<T>::top() const  
  29. {   
  30.       return m_data.back();   
  31. }   
  32.   
  33. // insert an elment at the end of stack   
  34. template <typename T> void CStackWithMin<T>::push(const T& value)   
  35. {   
  36.       // append the data into the end of m_data   
  37.        m_data.push_back(value);   
  38.   
  39.       // set the index of minimum elment in m_data at the end of m_minIndex   
  40.       if(m_minIndex.size() == 0)   
  41.              m_minIndex.push_back(0);   
  42.       else  
  43.        {   
  44.             if(value < m_data[m_minIndex.back()])   
  45.                    m_minIndex.push_back(m_data.size() - 1);   
  46.             else  
  47.                    m_minIndex.push_back(m_minIndex.back());   
  48.        }   
  49. }   
  50.   
  51. // erease the element at the end of stack   
  52. template <typename T> void CStackWithMin<T>::pop()   
  53. {   
  54.       // pop m_data   
  55.        m_data.pop_back();   
  56.       // pop m_minIndex   
  57.        m_minIndex.pop_back();   
  58. }   
  59.   
  60. // get the minimum element of stack   
  61. template <typename T> const T& CStackWithMin<T>::min() const  
  62. {   
  63.        assert(m_data.size() > 0);   
  64.        assert(m_minIndex.size() > 0);   
  65.       return m_data[m_minIndex.back()];   
  66. }  
#include <deque>
#include <assert.h>
template <typename T> class CStackWithMin
{
public:
       CStackWithMin(void) {}
      virtual ~CStackWithMin(void) {}
       T& top(void);
      const T& top(void) const;

      void push(const T& value);
      void pop(void);

      const T& min(void) const;

private:
      T> m_data;               // the elements of stack
      size_t> m_minIndex;      // the indices of minimum elements
};

// get the last element of mutable stack
template <typename T> T& CStackWithMin<T>::top()
{
      return m_data.back();
}

// get the last element of non-mutable stack
template <typename T> const T& CStackWithMin<T>::top() const
{
      return m_data.back();
}

// insert an elment at the end of stack
template <typename T> void CStackWithMin<T>::push(const T& value)
{
      // append the data into the end of m_data
       m_data.push_back(value);

      // set the index of minimum elment in m_data at the end of m_minIndex
      if(m_minIndex.size() == 0)
             m_minIndex.push_back(0);
      else
       {
            if(value < m_data[m_minIndex.back()])
                   m_minIndex.push_back(m_data.size() - 1);
            else
                   m_minIndex.push_back(m_minIndex.back());
       }
}

// erease the element at the end of stack
template <typename T> void CStackWithMin<T>::pop()
{
      // pop m_data
       m_data.pop_back();
      // pop m_minIndex
       m_minIndex.pop_back();
}

// get the minimum element of stack
template <typename T> const T& CStackWithMin<T>::min() const
{
       assert(m_data.size() > 0);
       assert(m_minIndex.size() > 0);
      return m_data[m_minIndex.back()];
}


举个例子演示上述代码的运行过程:
   步骤               数据栈             辅助栈                 最小值
1.push 3     3           0              3
2.push 4     3,4         0,0            3
3.push 2     3,4,2       0,0,2          2
4.push 1     3,4,2,1     0,0,2,3        1
5.pop        3,4,2       0,0,2          2
6.pop        3,4         0,0            3
7.push 0     3,4,0       0,0,2          0
讨论:如果思路正确,编写上述代码不是一件很难的事情。但如果能注意一些细节无疑能在面试中加分。比如我在上面的代码中做了如下的工作:
·         用模板类实现。如果别人的元素类型只是int类型,模板将能给面试官带来好印象;
·         两个版本的top函数。在很多类中,都需要提供const和非const版本的成员访问函数;
·         min函数中assert。把代码写的尽量安全是每个软件公司对程序员的要求;
·         添加一些注释。注释既能提高代码的可读性,又能增加代码量,何乐而不为?
总之,在面试时如果时间允许,尽量把代码写的漂亮一些。说不定代码中的几个小亮点就能让自己轻松拿到心仪的Offer。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值