题目描述
小苞准备开着车沿着公路自驾。
公路上一共有 n个站点,编号为从 1 到 n。其中站点 i 与站点 i+1 的距离为 vi 公里。
公路上每个站点都可以加油,编号为 i 的站点一升油的价格为 ai 元,且每个站点只出售整数升的油。
小苞想从站点 1 开车到站点 n,一开始小苞在站点 1 且车的油箱是空的。已知车的油箱足够大,可以装下任意多的油,且每升油可以让车前进 d 公里。问小苞从站点 1 开到站点 n,至少要花多少钱加油?
输入格式
输出格式
输出一行,仅包含一个正整数,表示从站点 1 开到站点 n,小苞至少要花多少钱加油。
输入输出样例
输入 #1
5 4
10 10 10 10
9 8 9 6 5
输出 #1
79
说明/提示
测试点 | n \leqn≤ | 特殊性质 |
---|---|---|
1\sim 51∼5 | 88 | 无 |
6\sim 106∼10 | 10^3103 | 无 |
11\sim 1311∼13 | 10^5105 | A |
14\sim 1614∼16 | 10^5105 | B |
17\sim 2017∼20 | 10^5105 | 无 |
———————————————————————————————————————————
解析:
Solution
反悔贪心思想。
从左到右考虑,如果行驶到某个加油站,缺油的时候,从之前经过的最便宜的加油站加油。
维护变量 ff 表示当前的状态。
若 f < 0f<0,则代表的是当前还能走多少公里的油。
否则 f \geq 0f≥0,表示当前需要加油,加的油量为 \lceil \dfrac{s}{d} \rceil⌈ds⌉。
注意本题的数据范围大,需要开 long long
!
Code
时间复杂度 O(n)O(n)。
代码:
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
const int N = 1e5 + 10;
int v[N], a[N];
int n, d;
int main() {
scanf("%d%d", &n, &d);
for (int i = 1; i < n; i++) scanf("%d", &v[i]);
int mi = INT_MAX;
LL ans = 0, s = 0;
for (int i = 1; i < n; i++) {
scanf("%d", &a[i]);
s += v[i];
mi = min(mi, a[i]);
if (s > 0) {
ans += (s + d - 1) / d * mi;
s -= (s + d - 1) / d * d;
}
}
printf("%lld\n", ans);
return 0;
}