DDetection
Asunany
这个作者很懒,什么都没留下…
展开
-
RFCN python demo.py 文件 运行后 没有检测结果图片显示 ?
相关的一个图像检测算法,我用的是RFCN,RFCN的时候, python demo_rfcn.py 文件 运行后 没有检测结果图片显示,查看了plt.show()函数, 感觉没有问题啊?因为运行faster rcnn的demo时候,有检测结果图,不知道为什么现在的这个不出来?请大家多多指点!...原创 2018-04-14 21:46:22 · 2220 阅读 · 4 评论 -
(转载)多标签图像分类任务的评价方法-mAP
转载多标签图像分类(Multi-label Image Classification)任务中图片的标签不止一个,因此评价不能用普通单标签图像分类的标准,即mean accuracy,该任务采用的是和信息检索中类似的方法—mAP(mean Average Precision)。mAP虽然字面意思和mean accuracy看起来差不多,但是计算方法要繁琐得多,以下是mAP的计算方法: ...转载 2018-04-30 10:48:51 · 695 阅读 · 0 评论 -
true-positive,false-positive,true-negative,false-negative差别
考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负...转载 2018-04-30 21:53:22 · 1117 阅读 · 0 评论 -
NMS非极大值抑制疑问,bbox和当前最高分框的重叠面积(IOU)小于一定阈值 那这些框该怎么处理呢?
下面是NMS的基本的算法流程,(1)将所有框的得分排序,选中最高分及其对应的框 (2)遍历其余的框,如果和当前最高分框的重叠面积(IOU)大于一定阈值,我们就将框删除。 (3)从未处理的框中继续选一个得分最高的,重复上述过程。 我的疑问是: 步骤(2)中遍历其余的框,如果和当前最高分框的重叠面积(IOU)小于一定阈值 那这些该怎么处理呢?谢谢?例如对于人脸检测出了2个bbox,...原创 2018-10-29 11:05:35 · 3740 阅读 · 13 评论