JVM学习笔记11: 类加载器双亲委托机制详解

本文深入探讨了Java类加载器的层次结构,包括根类加载器、扩展类加载器和系统类加载器的工作原理,以及自定义加载器的实现方式。通过具体的代码示例,展示了如何使用Class.forName()方法加载类,并解释了类加载过程中的双亲委派模型。

根类加载器<---扩展类加载器<----系统类加载器<---自定义加载器

先问父类--父类的父类-----顶层父类,如果顶层父类办不到,再问顶层父类的子类,依次询问

自低向上检查类是否已经被加载,自顶向下尝试加载类

根类加载器(启动类加载器)会尝试从  $JAVA_HOME 中  jre\lib\rt.jar里所有的class,由c++实现,不是ClassLoader的子类

扩展类加载器  加载Java平台中扩展功能的一些jar包,包括$JAVA_HOME中jre/lib/*jar或-DJava.ext.dirs指定目录下的jar包。

系统类加载器(App ClassLoader)f负责加载classpath中指定的jar包及目录中class

 

package com.shengsiyuan.jvm.classloder;

public class MyTest7 {
    public static void main(String[] args) throws Exception {
        Class<?> clazz=Class.forName("java.lang.String");
        System.out.println(clazz.getClassLoader());

        Class<?> clazz1=Class.forName("com.shengsiyuan.jvm.classloder.c");
        System.out.println(clazz1.getClassLoader());

    }
}
//应用类加载器或者系统类加载器
class c{

}

 

 

 

 

 

内容概要:本文介绍了基于Zernike矩的乳腺肿块良恶性分方法,结合快速相反权重学习规则,在Matlab平台上实现了医学图像特征提取与分的自动【基于Zernike矩的良性和恶性肿块的分】应用于乳腺癌诊断中的快速相反权重学习规则(Matlab代码实现)化流程。Zernike矩用于提取乳腺肿块的形状和纹理特征,具有良好的旋转不变性,适用于医学图像分析;快速相反权重学习规则则用于优化分过程,提高诊断准确率和效率。文中提供了完整的Matlab代码实现,便于研究人员复现和进一步优化算法。此外,文档还列举了多个相关科研方向和技术应用,展示了该方法在生物医学工程与智能诊断系统中的潜力。; 适合人群:具备一定Matlab编程基础,从事医学图像处理、模式识别、人工智能或生物医学工程领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于乳腺癌早期辅助诊断系统,提升医学影像分析的自动化水平;②作为科研教学案例,帮助理解图像特征提取(如Zernike矩)与智能分算法的结合应用;③为优化医学图像分模型提供可复现的技术路径与代码参考。; 阅读建议:建议读者结合提供的Matlab代码逐模块运行与调试,深入理解Zernike矩的特征提取机制及分器训练过程,同时可拓展学习文档中提及的相关算法(如支持向量机、深度学习等),以构建更高效的医学图像分析系统。
内容概要:本文围绕“基基于非Copula理论的股票投资组合预测:利用高斯定理预测股票亏损风险研究(Matlab代码实现)于非Copula理论的股票投资组合预测:利用高斯定理预测股票亏损风险研究”展开,提出了一种不依赖Copula函数的金融风险建模方法,通过高斯定理对股票收益率的分布特性进行建模,进而预测投资组合的亏损风险。研究重点在于构建符合实际金融市场特征的风险评估模型,利用Matlab实现相关算法,对股票投资组合的尾部风险和极端亏损情况进行量化分析,并与传统Copula方法进行对比,突出非Copula方法在特定条件下的有效性与简洁性。文中还涉及风险价值(VaR)和条件风险价值(CVaR)等指标的应用,强化了模型在实际投资决策中的实用性。; 适合人群:具备一定金融工程、统计学或数量经济学背景,熟悉Matlab编程,从事金融风险管理、投资组合优化及相关领域研究的研究生、科研人员及金融行业从业者。; 使用场景及目标:①用于金融领域中股票投资组合的风险评估与管理;②为不希望引入复杂依赖结构建模(如Copula)的研究者提供替代性风险预测方案;③通过Matlab代码实现,帮助用户理解高斯定理在金融风险预测中的具体应用流程,支持学术研究复现与工业级风险监控系统开发。; 阅读建议:建议读者结合Matlab代码逐段理解模型构建过程,重点关注收益率分布假设、高斯定理的应用逻辑及风险指标的计算方法。同时可将该方法与文档中提及的Copula方法进行对比实验,以深入掌握不同建模思路的优劣与适用范围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值