题目:
给定一个整数数组 nums
,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
思路:每次从后往前吧
表示以i开头能获得最大子序列和,对于-5来说,是和4一起,但是对于1来说,是自己。
代码如下:
package test;
public class LC53Try1
{
public int maxSubArray(int[] nums)
{
int len = nums.length;
int[] dp = new int[len];
dp[len - 1] = nums[len - 1];
for (int i = len - 2; i >= 0; i--)
{
if (dp[i + 1] < 0)
{
dp[i] = nums[i];
}
else
{
dp[i] = dp[i + 1] + nums[i];
}
}
int max = dp[0];
for (int j = 1; j < len; j++)
{
if (dp[j] > max)
{
max = dp[j];
}
}
return max;
}
public static void main(String[] args)
{
LC53Try1 t = new LC53Try1();
int[] nums = { -2, 1, -3, 4, -1, 2, 1, -5, 4 };
System.out.println(t.maxSubArray(nums));
}
}
哈哈