让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数。显然有 d1=1 且对于n>1有 dn 是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N (< 105),请计算不超过N的满足猜想的素数对的个数。
输入格式:每个测试输入包含1个测试用例,给出正整数N。
输出格式:每个测试用例的输出占一行,不超过N的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
参考代码:
import math
def isPrime(num):
if num==2:
return True
else:
for i in range(2,int(math.sqrt(num))+1,1):
if num%i==0:
return False
return True
count = 0;
n = int(input())
for k in range(2,n-1,1):
if isPrime(k)==True and isPrime(k+2)==True:
count+=1
print(count)