Java 大视界 -- Java 大数据机器学习应用:从数据预处理到模型训练与部署(三)

在这里插入图片描述

       💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。💖💖💖

在这里插入图片描述

本博客的精华专栏:

  1. 大数据新视界专栏系列:聚焦大数据,展技术应用,推动进步拓展新视野。
  2. Java 大视界专栏系列(NEW):聚焦 Java 编程,涵盖基础到高级,展示多领域应用,含性能优化等,助您拓宽视野提能力 。
  3. Java 大厂面试专栏系列:提供大厂面试的相关技巧和经验,助力求职。
  4. Python 魅力之旅:探索数据与智能的奥秘专栏系列:走进 Python 的精彩天地,感受数据处理与智能应用的独特魅力。
  5. Java 性能优化传奇之旅:铸就编程巅峰之路:如一把神奇钥匙,深度开启 JVM 等关键领域之门。丰富案例似璀璨繁星,引领你踏上编程巅峰的壮丽征程。
  6. Java 虚拟机(JVM)专栏系列:深入剖析 JVM 的工作原理和优化方法。
  7. Java 技术栈专栏系列:全面涵盖 Java 相关的各种技术。
  8. Java 学习路线专栏系列:为不同阶段的学习者规划清晰的学习路径。
  9. JVM 万亿性能密码:在数字世界的浩瀚星海中,JVM 如神秘宝藏,其万亿性能密码即将开启奇幻之旅。
  10. AI(人工智能)专栏系列:紧跟科技潮流,介绍人工智能的应用和发展趋势。
  11. 智创 AI 新视界专栏系列(NEW):深入剖析 AI 前沿技术,展示创新应用成果,带您领略智能创造的全新世界,提升 AI 认知与实践能力。
  12. 数据库核心宝典:构建强大数据体系专栏系列:专栏涵盖关系与非关系数据库及相关技术,助力构建强大数据体系。
  13. MySQL 之道专栏系列:您将领悟 MySQL 的独特之道,掌握高效数据库管理之法,开启数据驱动的精彩旅程。
  14. 大前端风云榜:引领技术浪潮专栏系列:大前端专栏如风云榜,捕捉 Vue.js、React Native 等重要技术动态,引领你在技术浪潮中前行。
  15. 工具秘籍专栏系列:工具助力,开发如有神。

【青云交社区】【架构师社区】的精华频道:

  1. 今日看点:宛如一盏明灯,引领你尽情畅游社区精华频道,开启一场璀璨的知识盛宴。
  2. 今日精品佳作:为您精心甄选精品佳作,引领您畅游知识的广袤海洋,开启智慧探索之旅,定能让您满载而归。
  3. 每日成长记录:细致入微地介绍成长记录,图文并茂,真实可触,让你见证每一步的成长足迹。
  4. 每日荣登原力榜:如实记录原力榜的排行真实情况,有图有真相,一同感受荣耀时刻的璀璨光芒。
  5. 每日荣登领军人物榜:精心且精准地记录领军人物榜的真实情况,图文并茂地展现,让领导风采尽情绽放,令人瞩目。
  6. 每周荣登作者周榜:精准记录作者周榜的实际状况,有图有真相,领略卓越风采的绽放。

       展望未来,我将持续深入钻研前沿技术,及时推出如人工智能和大数据等相关专题内容。同时,我会努力打造更加活跃的社区氛围,举办技术挑战活动和代码分享会,激发大家的学习热情与创造力。我也会加强与读者的互动,依据大家的反馈不断优化博客的内容和功能。此外,我还会积极拓展合作渠道,与优秀的博主和技术机构携手合作,为大家带来更为丰富的学习资源和机会。

       我热切期待能与你们一同在这个小小的网络世界里探索、学习、成长你们的每一次点赞、关注、评论、打赏和订阅专栏,都是对我最大的支持。让我们一起在知识的海洋中尽情遨游,共同打造一个充满活力与智慧的博客社区。✨✨✨

       衷心地感谢每一位为我点赞、给予关注、留下真诚留言以及慷慨打赏的朋友,还有那些满怀热忱订阅我专栏的坚定支持者。你们的每一次互动,都犹如强劲的动力,推动着我不断向前迈进。倘若大家对更多精彩内容充满期待,欢迎加入【青云交社区】【架构师社区】,如您对《 涨粉 / 技术交友 / 技术交流 / 内部学习资料 / 副业与搞钱 / 商务合作 》感兴趣的各位同仁, 欢迎在文章末尾添加我的微信名片:【QingYunJiao】(点击直达)【备注:CSDN 技术交流】。让我们携手并肩,一同踏上知识的广袤天地,去尽情探索。此刻,请立即访问我的主页【青云交社区】,那里有更多的惊喜在等待着你。相信通过我们齐心协力的共同努力,这里必将化身为一座知识的璀璨宝库,吸引更多热爱学习、渴望进步的伙伴们纷纷加入,共同开启这一趟意义非凡的探索之旅,驶向知识的浩瀚海洋。让我们众志成城,在未来必定能够汇聚更多志同道合之人,携手共创知识领域的辉煌篇章!

在这里插入图片描述


引言

亲爱的 Java大数据爱好者们,大家好!在我们深入探究了 Java 与大数据实时分析系统中低延迟数据管道的构建(如《Java 大视界 – Java 与大数据实时分析系统:构建低延迟的数据管道(二)》所述),以及领略了 Java 微服务架构在大数据应用中的精妙实践(参考《Java 大视界 – Java 微服务架构在大数据应用中的实践:服务拆分与数据交互(一)》)之后,此刻我们宛如站在技术的十字路口,前方是充满无限可能的 Java 大数据机器学习领域。机器学习,这颗大数据时代的璀璨明珠,正以其强大的数据分析和预测能力,重塑着各个行业的格局。让我们满怀热忱地踏上这一充满挑战与机遇的征程,深入挖掘从数据预处理到模型训练与部署的每一个细节,开启数据驱动智能决策的辉煌篇章。

在这里插入图片描述

正文

一、机器学习概述

1.1 机器学习基础概念

机器学习犹如一座神秘而迷人的知识殿堂,它扎根于多领域交叉的肥沃土壤,概率论、统计学、逼近论、凸分析、算法复杂度理论等众多学科为其提供了坚实的理论根基。从本质上讲,机器学习致力于让计算机像人类一样,从海量的数据中汲取知识,进而掌握数据背后隐藏的规律,并运用这些规律对新的数据进行精准的预测和明智的决策。

从任务类型的视角来看,机器学习主要分为监督学习、无监督学习和半监督学习这三大阵营。监督学习宛如一位经验丰富的导师带领学生学习,它通过大量已标记的数据进行训练,例如在图像识别领域,利用海量已标注好类别(如猫、狗、汽车等)的图片数据集,训练模型使其能够准确识别新图片中的物体类别;无监督学习则像是一位探索者在未知的数据海洋中独自航行,处理没有预先标记的数据,比如在客户行为分析中,通过对用户的浏览、购买等行为数据进行聚类分析,挖掘出具有相似行为模式的用户群体,从而为精准营销提供有力支持;半监督学习恰似两者的巧妙结合,它巧妙地利用少量珍贵的标记数据和大量丰富的未标记数据进行学习,在某些特定场景下,能够发挥出独特的优势,如在医学图像分析中,少量经过专业医生标注的图像与大量未标注的图像共同用于模型训练,以提高疾病诊断的准确性。

1.2 大数据与机器学习的关系

大数据与机器学习,恰似一对形影不离的亲密伙伴,相互依存、相互促进。大数据犹如一座蕴含无尽宝藏的矿山,为机器学习提供了海量、丰富且多样化的数据资源,使得机器学习模型能够在这片数据的海洋中尽情遨游,学习到更为复杂、更为全面、更为深入的模式和规律。

例如,在蓬勃发展的电商领域,每天都会产生数以亿计的用户购买历史、浏览记录、搜索关键词等数据,这些数据如同繁星般璀璨,为构建精准无比的推荐模型提供了坚实的基础。通过对这些数据的深入分析和挖掘,机器学习模型能够精准地洞察用户的兴趣偏好、消费习惯等个性化特征,从而为用户推荐他们真正心仪的商品,实现个性化购物体验的完美升华。

与此同时,机器学习技术则像是一把神奇的钥匙,为大数据的价值挖掘开启了一扇扇紧闭的大门。它能够从看似杂乱无章的海量数据中提取出熠熠生辉的有价值信息,犹如在黑暗中找到璀璨的明珠。比如在社交媒体数据分析中,通过机器学习算法对海量的用户言论、情感表达、社交关系等数据进行分析,能够精准地预测市场趋势、社会热点事件的走向,为企业的市场决策提供敏锐而准确的洞察力;在医疗影像诊断领域,机器学习模型可以对海量的医疗影像数据进行快速、准确的分析,辅助医生发现疾病的早期迹象,提高诊断的准确性和效率,拯救无数宝贵的生命。

二、数据预处理

2.1 数据清洗与缺失值处理

在现实世界的大数据应用中,数据往往如同未经雕琢的璞玉,存在着各种各样的瑕疵,如噪声、错误和缺失值等问题。数据清洗就是一位技艺精湛的工匠,其目的在于精心识别并巧妙纠正这些问题,从而全方位提升数据的质量,使其能够成为机器学习模型茁壮成长的肥沃土壤。

对于缺失值这一常见问题,我们拥有多种行之有效的处理方法。以下是一个使用 Java 及第三方库 Apache Commons Math 和 OpenCSV 进行数据清洗和缺失值处理的示例代码,它就像是一个实用的工具包,帮助我们轻松应对数据清洗的挑战:

import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
import com.opencsv.CSVReader;
import com.opencsv.CSVWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DataCleaningExample {
   
    public static void main(String[] args) {
   
        String inputFile = "sales_data.csv";
        String outputFile = "cleaned_sales_data.csv";

        try {
   
            // 读取CSV文件
            CSVReader reader = new CSVReader(new FileReader(inputFile));
            List<String[]> allRows = reader.readAll();
            reader.close();

            // 数据清洗和缺失值处理
            List<String[]> cleanedRows = new ArrayList<>();
            List<Integer> quantityColumnIndices = new ArrayList<>();
            for (int i = 0; i < allRows.get(0).length; i++) {
   
                if (allRows.get(0)[i].equals("quantity")) {
   
                    quantityColumnIndices.add(i);
                }
            }

            for (String[] row : allRows) {
   
                if (row.length == 4 &&!row[1].isEmpty() &&!row[2].equals("NaN")) {
   
                    cleanedRows.add(row);
                } else if (row.length == 4 && row[2].equals("NaN")) {
   
                    // 对于特定列(假设为第三列'quantity')的缺失值,使用更精确的同类别均值填充
                    double mean = calculateMeanForCategory(cleanedRows, quantityColumnIndices, row);
                    row[2] = String.valueOf(mean);
                    cleanedRows.add(row);
                }
            }

            // 写入清洗后的数据到新的CSV文件
            CSVWriter writer = new CSVWriter(new FileWriter(outputFile));
            writer.writeAll(cleanedRows);
            writer.close();

            System.out.println("数据清洗和缺失值处理完成,结果保存到 " + outputFile);

        } catch (IOException e) {
   
            e.printStackTrace();
        }
    }

    private static double calculateMeanForCategory(List<String[]> data, List<Integer> columnIndices, String[] currentRow) {
   
        List<Double> categoryData = new ArrayList<>();
        for (String[] row : data) {
   
            if (isSameCategory(row, currentRow, columnIndices)) {
   
                if (!row[2].isEmpty()) {
   
                    categoryData.add(Double.parseDouble(row[2]));
                }
            }
        }
        DescriptiveStatistics stats = new DescriptiveStatistics();
        for (double num : categoryData) {
   
            stats.addValue(num)
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青云交

优质创作不易,期待你的打赏。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值