Matlab 关于彩色图像的平移、旋转以及对称处理

Matlab 关于彩色图像的平移、旋转以及对称处理

一、实验源码
(1)图像平移

image = imread('picture1.jpg'); % 读取图像

[W, H, G] = size(image); % 获取图像大小

image_r=image(:,:,1);
image_g=image(:,:,2);
image_b=image(:,:,3);%获取图像的RGB值

res = zeros(W, H, 3); % 构造结果矩阵。每个像素点默认初始化为0(黑色)

X = 50; % 平移量X
Y = 50; % 平移量Y
tras = [1 0 X; 0 1 Y; 0 0 1]; % 平移的变换矩阵 

  for i = 1 : W     
     for j = 1 : H
        temp = [i; j; 1];
        temp = tras * temp; % 矩阵乘法
        x = temp(1, 1);
        y = temp(2, 1);%x、y分别为通过矩阵乘法得到后的平移位置的横纵坐标值

        % 变换后的位置判断是否越界
        if (x <= W) && (y <= H)&&(x >= 1) && (y >= 1)
            res(x,y,1) = image_r(i, j);
            res(x,y,2) = image_g(i, j);
            res(x,y,3) = image_b(i, j);%将新的RGB值赋予在背景上   
        end
     end
  end

imshow(uint8(res)); % 显示图像,要用uint8转化,以下都是。

(2)图像偏转

image = imread('picture1.jpg'); % 读取图像

[W, H, G] = size(image); % 获取图像大小

image_r=image(:,:,1);
image_g=image(:,:,2);
image_b=image(:,:,3);%获取图像的RGB值

X = 30; % 偏移角度,角度可以自己换
Y = pi/180*X; %偏转弧度,由于matlab里面的三角函数的参数是弧度,需进行角度转弧度处理
tras = [cos(Y) -sin(Y) 0; sin(Y) cos(Y) 0; 0 0 1]; % 平移的变换矩阵 

res = zeros(W, H, 3); % 构造结果矩阵。每个像素点默认初始化为0(黑色)

  for i = 1 : W     
     for j = 1 : H
        temp = [i; j; 1];
        temp = tras * temp; % 矩阵乘法
        x = round(uint16(temp(1, 1)));
        y = round(uint16(temp(2, 1)));%x、y分别为通过矩阵乘法得到后的平移位置的横纵坐标值

        % 变换后的位置判断是否越界
        if (x <= W) && (y <= H)&&(x >= 1) && (y >= 1)
            res(x,y,1) = image_r(i, j);
            res(x,y,2) = image_g(i, j);
            res(x,y,3) = image_b(i, j);%将新的RGB值赋予在背景上   
        end
     end
  end

  %插值处理,由于算法问题(小数取整),旋转后并不是每一个像素点都有值,因此需要在没有值的像素点再填充像素点
  for a =2 : (W - 1)
      for b=2 :( H - 1)
          for c=1 : 3
          if res(a,b,c)==0&&res(a,b-1,c)~=0&&res(a,b+1,c)~=0
              res(a,b,c)=res(a,b-1,c);
          end
          end
      end
  end

imshow(uint8(res)); % 显示图像

(3)图像对称(左右、上下)

%左右对称
image = imread('picture1.jpg'); % 读取图像

[W, H, G] = size(image); % 获取图像大小

image_r=image(:,:,1);
image_g=image(:,:,2);
image_b=image(:,:,3);%获取图像的RGB值

res = zeros(W, H, 3); % 构造结果矩阵。每个像素点默认初始化为0(黑色)

  for i = 1 : W     
     for j = 1 : H   
        x = i;
        y = H-j+1;%左右对称
            res(x,y,1) = image_r(i, j);
            res(x,y,2) = image_g(i, j);
            res(x,y,3) = image_b(i, j);%将新的RGB值赋予在背景上   
     end
  end

imshow(uint8(res)); % 显示图像
%上下对称
image = imread('picture1.jpg'); % 读取图像

[W, H, G] = size(image); % 获取图像大小

image_r=image(:,:,1);
image_g=image(:,:,2);
image_b=image(:,:,3);%获取图像的RGB值

res = zeros(W, H, 3); % 构造结果矩阵。每个像素点默认初始化为0(黑色)

  for i = 1 : W     
     for j = 1 : H   
        x = W-i+1;
        y = j;%上下对称
            res(x,y,1) = image_r(i, j);
            res(x,y,2) = image_g(i, j);
            res(x,y,3) = image_b(i, j);%将新的RGB值赋予在背景上   
     end
  end

imshow(uint8(res)); % 显示图像

二、实验结果
(1)平移展示
平移展示
(2)旋转展示
旋转展示
(3)对称展示
对称展示

 至此,彩色图像的基本处理到这啦,关于旋转插值处理那里我的处理还是不怎么好,希望如果小伙伴有更好的方式就和我讨论下,我改进一下。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值