最长公共子序列(动态规划)

1.最长公共子序列(不连续)

是指从给定序列中随意去掉一些字符后形成的子序列。(随意的意思是可以不连续的去掉一些个,也可以一个不去)

比如对于下面两个序列
a:abcbdb
b:acbbabdbb
它们的最长公共子序列:acbdb,长度5。

采用动态规划求解,定义F[ i, j ]为( a 0 , a 1 , . . . a i − 1 a_0,a_1,...a_{i-1} a0,a1,...ai1)和( b 0 , b 1 , . . . b j − 1 b_0,b_1,...b_{j-1} b0,b1,...bj1)的最长公共子序列长度。

因此根据定义查找过程分为下面的三种情况:

  1. i=0 或 j=0 时,F[ i, j ]=0,对应边界情况。
  2. a[ i-1]=b[ j-1]时,则进一步解决一个子问题,继续找出( a 0 , a 1 , . . . a i − 2 a_0,a_1,...a_{i-2} a0,a1,...ai2)和( b 0 , b 1 , . . . b j − 2 b_0,b_1,...b_{j-2} b0,b1,...bj2)的最长公共子序列长度。状态转移方程F[ i, j ]=F[ i-1, j-1 ]+1。
  3. a[ i-1]≠b[ j-1]时,则划分成两个子问题,需要分别找出( a 0 , a 1 , . . . a i − 1 a_0,a_1,...a_{i-1} a0,a1,...ai1)和( b 0 , b 1 , . . . b j − 2 b_0,b_1,...b_{j-2} b0,b1,...bj2)以及( a 0 , a 1 , . . . a i − 2 a_0,a_1,...a_{i-2} a0,a1,...ai2)和( b 0 , b 1 , . . . b j − 1 b_0,b_1,...b_{j-1} b0,b1,...bj1)的最长公共子序列长度,并取二者最大值。对应状态转移方程F[ i, j ]=max(F[ i, j-1 ], F[ i-1, j ])。
public class LCS {
	char[] a; 						// 存放序列a
	char[] b; 						// 存放序列b
	int[][] dp;

	public LCS(String str1, String str2) {
		a = str1.toCharArray();
		b = str2.toCharArray();
		dp = new int[a.length + 1][b.length + 1];
	}

	// 获取最大长度
	public int getLenth() {
		for (int i = 1; i <= a.length; i++) {
			for (int j = 1; j <= b.length; j++) {
				if (a[i - 1] == b[j - 1]) {
					dp[i][j] = dp[i - 1][j - 1] + 1;
				} else {
					dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
				}
			}
		}
		return dp[a.length][b.length];
	}

	// 根据dp数组找出子序列,其实是反向还原上面求长度的过程
	public StringBuilder getSubSequence() {
		int i = a.length;
		int j = b.length;
		int len = dp[i][j];

		StringBuilder subs = new StringBuilder("");
		while (len > 0) {
			if (dp[i][j] == dp[i - 1][j]) {
				i--;
			} else if (dp[i][j] == dp[i][j - 1]) {
				j--;
			} else {
				// 不满足上面两种情况时一定有dp[i][j]=dp[i-1][j-1]+1,对应a[i-1]=b[j-1]
				subs.append(a[i - 1]);
				i--;
				j--;
				len--;
			}
		}
		return subs.reverse();
	}

	public static void main(String[] args) {
		String str1 = "abcbdb";
		String str2 = "acbbabdbb";
		LCS ls = new LCS(str1, str2);
		System.out.println("长度:" + ls.getLenth());
		System.out.println("最长公共子序列:" + ls.getSubSequence());
	}
}

求解过程中的dp数组
在这里插入图片描述
因为求解过程中两层for循环并创建了一个二维数组,所以对于两个长度分别为 m, n 的序列,求解的时间和空间复杂度均为 O ( m n ) Ο(mn) O(mn)

2.最长公共子序列(连续)

还是上面两个序列,它们的最长公共连续子序列为:
a:abcbdb
b:acbbabdbb

这次定义F[ i, j ]为( a 0 , a 1 , . . . a i − 1 a_0,a_1,...a_{i-1} a0,a1,...ai1)和( b 0 , b 1 , . . . b j − 1 b_0,b_1,...b_{j-1} b0,b1,...bj1)的最长公共连续子序列长度,且子序列最后一个字符为 a i − 1 或 b i − 1 a_{i-1}或b_{i-1} ai1bi1,也就是说这个连续子序列同时为两个序列的后半部分。

对此又可以分成下面三种情况:

  1. 边界情况F[ i, j ]=0,当 i=0 或 j=0 时。
  2. a[ i-1 ]=b[ j-1 ],继续往前寻找,有F[ i, j ]=F[ i-1, j-1 ]+1。
  3. a[ i-1 ]≠b[ j-1 ],根据定义这个连续子序列必须以a[ i-1 ]或b[ j-1 ]结尾,这样的子序列不存在,所以有有F[ i, j ]=0。
public class LCS {
	char[] a; 						// 存放序列a
	char[] b; 						// 存放序列b
	int[][] dp;
	int len; 						// 保存最大长度
	int index; 						// 保存公共子序列的起始下标

	public LCS(String str1, String str2) {
		a = str1.toCharArray();
		b = str2.toCharArray();
		dp = new int[a.length + 1][b.length + 1];
	}

	public int getLenth() {
		for (int i = 1; i <= a.length; i++) {
			for (int j = 1; j <= b.length; j++) {
				if (a[i - 1] == b[j - 1]) {
					dp[i][j] = dp[i - 1][j - 1] + 1;
				}

				if (dp[i][j] > len) {
					len = dp[i][j];
					index = i - len;
				}
			}
		}
		return len;
	}

	public StringBuilder getSubSequence() {
		StringBuilder subs = new StringBuilder("");
		for (int i = 0; i < len; i++) {
			subs.append(a[index + i]);
		}
		return subs;
	}

	public static void main(String[] args) {
		String str1 = "abcbdb";
		String str2 = "acbbabdbb";
		LCS ls = new LCS(str1, str2);
		System.out.println("长度:" + ls.getLenth());
		System.out.println("最长连续公共子序列:" + ls.getSubSequence());
	}
}

求解过程中的dp数组:
在这里插入图片描述

时间和空间复杂度同样为 O ( m n ) Ο(mn) O(mn)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值