[BZOJ 4350]括号序列再战猪猪侠 题解(区间DP)

[BZOJ 4350]括号序列再战猪猪侠

Description

括号序列与猪猪侠又大战了起来。
众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号
序列S合法,当且仅当:
1.( )是一个合法的括号序列。
2.若A是合法的括号序列,则(A)是合法的括号序列。
3.若A,B是合法的括号序列,则AB是合法的括号序列。
我们考虑match[i]表示从左往右数第i个左括号所对应的是第几个右
括号,现在他得到了一个长度为2n的括号序列,给了你m个信息,第i
个信息形如ai,bi,表示match[ai]<match[bi],要你还原这个序列。
但是你发现这个猪猪侠告诉你的信息,可能有多个括号序列合法;甚
至有可能告诉你一个不存在合法括号序列的信息!
你最近学了取模运算,你想知道答案对998244353(7172^23+1)取
模的结果,这个模数是一个质数。

Input
第一行一个正整数T,T< = 5,表示数据组数。
对于每组数据,第一行一个n,m,n表示有几个左括号,m表示信息数。
接下来m行,每行两个数ai,bi,1< = ai,bi< = n。

Output
对于每组数据,输出一个数表示答案。

Solution

1.对于限制条件match[i]<match[j],记录v[i][j]=1。在所有条件记录结束后,处理二维前缀和,用于dp转移合法性的判断;

当sum[x1...x2][y1...y2]>0时,即代表[x1...x2]中的元素对[y1...y2]中的元素有限制。

补充:求二维区间和办法:O(n^2)预处理前缀和,O(1)询问结果:

对于v[x1...x2][y1...y2](x1<=x2,y1<=y2),

ans=v[x2][y2]-v[x1-1][y2]-v[x2][y1-1]+v[x1-1][y1-1],即:

inline ll sum(ll x1,ll x2,ll y1,ll y2){
    return v[x2][y2]-v[x1-1][y2]-v[x2][y1-1]+v[x1-1][y1-1];
}

2.对与待处理区间[l,r],将其用第一个左括号对应的右括号的位置划分并转移:

(1)第一个括号对应的右括号在它旁边,当且仅当其后方对其没有限制时,

即sum(l+1,r,l,l)=0,转移为 f[l][r]=(f[l][r]+f[l+1][r])%mod;

(2)第一个括号对应的右括号在整个区间右边,当且仅当其对后方没有限制时,

即sum(l,l,l+1,r)=0,转移同上;

(3)第一个括号对应的右括号在区间内,在第k个左括号右侧时,此时应满足:

a.右半段对左半端没有限制,即 sum(k+1,r,l,k)=0;

b.第一个括号对左半个区间没有限制时,即 sum(l,l,l+1,k)=0;

转移为方案数加上左侧方案数右侧方案数,即 f[l][r]=(f[l][r]+f[l+1][k]f[k+1][r])%mod;

Code

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
typedef long long ll;
using namespace std;

ll t,n,m,v[500][500],f[500][500]; 
const ll mod=998244353;

inline ll rd(){
    ll x=0;
    bool f=0;
    char c=getchar();
    while(!isdigit(c)){
        if(c=='-')f=1;
        c=getchar();
    }
    while(isdigit(c)){
        x=(x<<1)+(x<<3)+(c^48);
        c=getchar();
    }
    return f?-x:x;
}

void init(){
    n=rd();
    m=rd();
    memset(f,0,sizeof(f));
    memset(v,0,sizeof(v));
    for(ll i=1;i<=m;++i)v[rd()][rd()]=1;
    for(ll i=1;i<=n;++i)
        for(ll j=1;j<=n;++j)
            v[i][j]=v[i-1][j]+v[i][j-1]+v[i][j]-v[i-1][j-1];    
}

inline ll sum(ll x1,ll x2,ll y1,ll y2){
    return v[x2][y2]-v[x1-1][y2]-v[x2][y1-1]+v[x1-1][y1-1];
}

void dp(){
    for(ll i=1;i<=n;++i){
        f[i][i]=1;
        if(sum(i,i,i,i)==1){
            putchar('0');
            putchar('\n');
            return;
        }
    }
    for(ll len=2;len<=n;++len)
        for(ll l=1;l<=n-len+1;++l){
            ll r=l+len-1;
            if(!sum(l,l,l+1,r)) f[l][r]=(f[l][r]+f[l+1][r])%mod;
            if(!sum(l+1,r,l,l)) f[l][r]=(f[l][r]+f[l+1][r])%mod;
            for(ll k=l;k<=r;++k)
                if((!sum(k+1,r,l,k))&&(!sum(l,l,l+1,k)))
                    f[l][r]=(f[l][r]+f[l+1][k]*f[k+1][r])%mod;
        }
    printf("%lld\n",f[1][n]);   
}

int main(){
    t=rd();
    while(t--){init();dp();}
    return 0; 
}

有关区间DP的其他讲解参考我的随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/9038198.html

转载于:https://www.cnblogs.com/COLIN-LIGHTNING/p/8977183.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值