audioFluxLab
码龄2年
关注
提问 私信
  • 博客:2,454
    社区:156
    2,610
    总访问量
  • 4
    原创
  • 322,894
    排名
  • 7
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2023-02-21
博客简介:

audioFluxLab的博客

查看详细资料
个人成就
  • 获得6次点赞
  • 内容获得6次评论
  • 获得14次收藏
创作历程
  • 4篇
    2023年
成就勋章
TA的专栏
  • 深度学习
    4篇
  • 音频
    4篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Mel频谱和MFCC深入浅出

在音频领域,mel频谱和mfcc是非常重要的特征数据,在深度学习领域通常用此特征数据作为网络的输入训练模型,来解决音频领域的各种分类、分离等业务,如端点侦测、节奏识别、和弦识别、音高追踪、乐器分类、音源分离、回声消除等相关业务。当然,针对深度学习音频领域的业务,不是用下这两个特征、选几个网络、打个标签,放数据训练就完事了, 仅仅基于mel频谱和mfcc这两个特征,解决好上述业务某些情况下还是远远不够的,熟悉这些特征的内在逻辑性、衍生细节和延展,才能更好的结合深度学习解决业务问题。
原创
发布博客 2023.02.28 ·
437 阅读 ·
3 点赞 ·
1 评论 ·
1 收藏

深度学习工具评测---音频领域的python库推荐

最后总结一下,audioFlux是为研发和工程设计的,提供尽可能细粒度、体系化的特征维度和组合。针对研发,做为一个特征提取库,要有深度和广度体系。目前算的上体系的,audioFlux算一个,librosa算半个。针对工程,要满足提取性能,尽量支持移动端(可选)。aubio, audioFlux, essentia三个都是C/C++实现,python包装,性能上无大问题,并且都支持移动端。库本身而言,要定位清晰。audioFlux, librosa定位清晰,其它的库如madmom, essentia。
原创
发布博客 2023.02.21 ·
716 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

深度学习工具audioFlux---一个系统的音频特征提取库

是一个Python和C实现的库,提供音频领域系统、全面、多维度的特征提取与组合,结合各种深度学习网络模型,进行音频领域的业务研发,下面从时频变换、频谱重排、倒谱系数、解卷积、谱特征、音乐信息检索六个方面简单阐述其相关功能。
原创
发布博客 2023.02.21 ·
969 阅读 ·
1 点赞 ·
2 评论 ·
9 收藏

音频领域常用的谱特征

以上谱特征只是频域数据常用的部分特征,可以在此基础上实现更为高级的音色听觉特征如roughness,hardness,brightness等等各种***ness音色感知特征。14和15包含丰富多样的各种维度的Novelty相关方法,干货满满,每一个单独拎出来都可以作为一篇论文发表,建议使用audioFlux做详细的测试,一定会有不少的收获。下面是一张使用audioFlux测试的部分特征效果图。
原创
发布博客 2023.02.21 ·
332 阅读 ·
1 点赞 ·
2 评论 ·
1 收藏