Q4.1 节点间通路
节点间通路。给定有向图,设计一个算法,找出两个节点之间是否存在一条路径。
示例1:
输入:n = 3, graph = [[0, 1], [0, 2], [1, 2], [1, 2]], start = 0, target = 2
输出:true
示例2:输入:n = 5, graph = [[0, 1], [0, 2], [0, 4], [0, 4], [0, 1], [1, 3], [1, 4], [1, 3], [2, 3], [3, 4]], start = 0, target = 4
输出 true
提示:节点数量n在[0, 1e5]范围内。
节点编号大于等于 0 小于 n。
图中可能存在自环和平行边。
class Solution {
public boolean findWhetherExistsPath(int n, int[][] graph, int start, int target) {
map = new HashMap<>();
visited = new int[n];
for(int[] edge:graph){
List<Integer> list = map.getOrDefault(edge[0], new ArrayList<>());
list.add(edge[1]);
map.put(edge[0], list);
}
return dfs(start, target);
}
private boolean dfs(int start, int target){
if(start == target)
return true;
visited[start] = 1;
if(map.get(start) == null)
return false;
List<Integer> list = map.get(start);
for(int i:list){
if(visited[i] == 0){
if(dfs(i, target))
return true;
}
}
visited[start] = 1;
return false;
}
private HashMap<Integer, List<Integer>> map;
private int[] visited;
}
Q4.2 最小高度树
给定一个有序整数数组,元素各不相同且按升序排列,编写一个算法,创建一棵高度最小的二叉搜索树。
示例:
给定有序数组: [-10,-3,0,5,9],一个可能的答案是:[0,-3,9,-10,null,5],它可以表示下面这个高度平衡二叉搜索树:
0
/ \
-3 9
/ /
-10 5
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
TreeNode root;
root=f(nums,0,nums.length-1);
return root;
}
public TreeNode f(int[] nums,int x,int y){
if(x>y) return null;
TreeNode root=new TreeNode();
int s=(x+y)/2;
root.val=nums[s];
root.left=f(nums,x,s-1);
root.right=f(nums,s+1,y);
return root;
}
}
Q4.3 特定深度节点链表
给定一棵二叉树,设计一个算法,创建含有某一深度上所有节点的链表(比如,若一棵树的深度为 D,则会创建出 D 个链表)。返回一个包含所有深度的链表的数组。
示例:
输入:[1,2,3,4,5,null,7,8]
1
/ \
2 3
/ \ \
4 5 7
/
8输出:[[1],[2,3],[4,5,7],[8]]
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode[] listOfDepth(TreeNode root) {
if (root == null) {
return null;
}
//BFS中的队列
Queue<TreeNode> queue = new LinkedList<>();
//先把根节点入队,然后执行“弹一个,加n个”
queue.add(root);
//存放每个链表第一个有实际值(非哑元)节点的容器,ArrayList实际上是一个可变长的数组
List<ListNode> list = new ArrayList<>();
//只要队列中还有元素就要不停的出队,直到队列中的所有元素都已出队
while (!queue.isEmpty()) {
//当前队列的长度,即当前层元素的总个数
int size = queue.size();
//链表的头结点,不放实际的值(哑元)
ListNode head = new ListNode(0);
//链表移动指针,让它始终指向当表链表的最后一个元素
ListNode p = head;
//将当前层的节点逐个出队,把出队节点的子节点入队
for (int i = 0; i < size; i++) {
TreeNode poll = queue.poll();
//链表元素追加
p.next = new ListNode(poll.val);
//指针向后移动一个元素,使p指向链表末尾
p = p.next;
if (poll.left != null) {
//当前出队的节点有左孩子,则左孩子入队
queue.add(poll.left);
}
if (poll.right != null) {
//当前出队的节点有右孩子,则右孩子入队
queue.add(poll.right);
}
}
//for循环走完后就遍历完了一层,将存储该层节点的链表第一个有实际值的节点入队
list.add(head.next);
}
//将可变长的数组转化成定长数组(因为函数的返回值要求了返回一个定长数组ListNode[])
return list.toArray(new ListNode[list.size()]);
}
}
Q4.4 检查平衡性
实现一个函数,检查二叉树是否平衡。在这个问题中,平衡树的定义如下:任意一个节点,其两棵子树的高度差不超过 1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回 true 。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/ \
2 2
/ \
3 3
/ \
4 4
返回 false 。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
if(root==null) return true;
int x=depth(root.left);
int y=depth(root.right);
if(x-y>=-1&&x-y<=1){
boolean m=isBalanced(root.left);
boolean n=isBalanced(root.right);
return m&&n;
}else{
return false;
}
}
public int depth(TreeNode root){
if(root==null) return 0;
return Math.max(depth(root.left),depth(root.right))+1;
}
}
Q4.5 合法二叉搜索树
实现一个函数,检查一棵二叉树是否为二叉搜索树。
示例 1:
输入:
2
/ \
1 3
输出: true
示例 2:
输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
二叉搜索树的定义如下
- 一个节点的左子树上节点的值都小于自身的节点值
- 一个节点的右子树上节点的值都小于自身的节点值
- 所有节点的左右子树都必须是二叉搜索树
采用递归中序遍历方法依次比较当前节点值和后一个节点值的大小,若当前节点值大于等于后一个节点值,则不是 二叉搜索树:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
Integer pre = null;
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
if (isValidBST(root.left)) {
if (pre == null) pre = root.val;
else {
if (root.val <= pre) return false;
else pre = root.val;
}
return isValidBST(root.right);
}
return false;
}
}
Q4.8 首个共同祖先
设计并实现一个算法,找出二叉树中某两个节点的第一个共同祖先。不得将其他的节点存储在另外的数据结构中。注意:这不一定是二叉搜索树。
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
3
/ \
5 1
/ \ / \
6 2 0 8
/ \
7 4
示例 1:输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null)
return null;
if(p == root || q == root)
return root;
TreeNode l = lowestCommonAncestor(root.left, p, q);
TreeNode r = lowestCommonAncestor(root.right, p, q);
if(l != null && r != null)
return root;
return l == null ? r : l;
}
}
Q4.9 二叉搜索树序列
从左向右遍历一个数组,通过不断将其中的元素插入树中可以逐步地生成一棵二叉搜索树。给定一个由不同节点组成的二叉搜索树,输出所有可能生成此树的数组。
示例:
给定如下二叉树2
/ \
1 3
返回:[
[2,1,3],
[2,3,1]
]
分析:
根据题意分析可知,插入元素的顺序必须从根节点开始插入,也就是先插入2后,才可以插入1和3。那么我们维护一个可以访问的节点列表,每轮递归都依次访问列表中的元素,当访问元素有孩子结点时,把孩子结点加入到列表中,然后再去依次访问列表中的元素,当列表为空时,表示产生了一个有效的序列,把它加入到结果集当中。注意访问结点时,要先在列表中删除掉,访问结束后记得恢复。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> BSTSequences(TreeNode root) {
res = new LinkedList<>();
if(root == null){
res.add(new LinkedList<>());
return res;
}
LinkedList<TreeNode> list = new LinkedList<>();
LinkedList<Integer> path = new LinkedList<>();
path.add(root.val);
getSequences(root, list, path);
return res;
}
private void getSequences(TreeNode root, LinkedList<TreeNode> list, LinkedList<Integer> path){
if(root == null){
return;
}
if(root.left != null)
list.add(root.left);
if(root.right != null)
list.add(root.right);
if(list.isEmpty()){
res.add(new LinkedList<>(path));
return;
}
int len = list.size();
for(int i = 0; i < len; ++i){
TreeNode cur = list.get(i);
list.remove(i);
path.add(cur.val);
getSequences(cur, new LinkedList<>(list), path);
path.removeLast();
list.add(i, cur);
}
}
private List<List<Integer>> res;
}
Q4.10 检查子树
检查子树。你有两棵非常大的二叉树:T1,有几万个节点;T2,有几万个节点。设计一个算法,判断 T2 是否为 T1 的子树。
如果 T1 有这么一个节点 n,其子树与 T2 一模一样,则 T2 为 T1 的子树,也就是说,从节点 n 处把树砍断,得到的树与 T2 完全相同。
示例1:
输入:t1 = [1, 2, 3], t2 = [2]
输出:true
示例2:输入:t1 = [1, null, 2, 4], t2 = [3, 2]
输出:false
思路:遍历二叉树t1的每一个节点,看能否找到以该节点为根的树与t2相同。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public static boolean isSame(TreeNode t1, TreeNode t2) {
//当同时到达叶子节点的后继(都为空),依然没返回false,就返回true
if (t1 == null && t2 == null) {
return true;
}
//待比较的两个节点一个为空,另一个不为空,说明这两棵树不相等
if (t1 == null || t2 == null) {
return false;
}
//如果待比较的两个节点都不为空,就比较它们的值是否相等,如果值相等就继续判断它们的左、右子树是否相等
return t1.val == t2.val && isSame(t1.left, t2.left) && isSame(t1.right, t2.right);
}
public boolean checkSubTree(TreeNode t1, TreeNode t2) {
//如果遍历到达的节点为空,则判断t2是否也为空,若是返回true,不是返回false
if (t1 == null) {
return t2 == null;
}
//遍历t1的每一个节点,看能否找到一棵子树与t2相同
return isSame(t1, t2) || (checkSubTree(t1.left, t2) || checkSubTree(t1.right, t2));
}
}
Q4.12 求和路径
给定一棵二叉树,其中每个节点都含有一个整数数值(该值或正或负)。设计一个算法,打印节点数值总和等于某个给定值的所有路径的数量。注意,路径不一定非得从二叉树的根节点或叶节点开始或结束,但是其方向必须向下(只能从父节点指向子节点方向)。
示例:
给定如下二叉树,以及目标和 sum = 22,5
/ \
4 8
/ / \
11 13 4
/ \ / \
7 2 5 1
返回:3
解释:和为 22 的路径有:[5,4,11,2], [5,8,4,5], [4,11,7]
class Solution {
public int pathSum(TreeNode root, int sum) {
if (root == null) {
return 0;
}
return helper(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum);
}
private int helper(TreeNode node, int sum) {
if (null == node) {
return 0;
}
sum -= node.val;
int count = sum == 0 ? 1 : 0;
count += helper(node.left, sum);
count += helper(node.right, sum);
return count;
}
}