48.旋转图像

题目

给定一个 n × n 的二维矩阵表示一个图像。

将图像顺时针旋转 90 度。

说明:

你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。

示例 1:

给定 matrix = 
[
  [1,2,3],
  [4,5,6],
  [7,8,9]
],

原地旋转输入矩阵,使其变为:
[
  [7,4,1],
  [8,5,2],
  [9,6,3]
]
示例 2:

给定 matrix =
[
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
], 

原地旋转输入矩阵,使其变为:
[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/rotate-image
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

解法

划重点:题目要求**原地旋转**

两重循环
第一重循环是遍历“层”,例如3X3的matrix,需要遍历2层;
第二重循环是遍历“元素”,如:
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
第二重循环中遍历1/3/9/7和2/6/8/4

## 注意:
第二重循环的个数要减少**“层”数目**的二倍,即 for i in range(n - 1 - 2*r)

 

class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        n = len(matrix)
        new_m = [[0] * n for i in range(n)]
        num_round = int(n / 2 + 0.5)
        for r in range(num_round):
            for i in range(n - 1 - 2*r):                
                matrix[i+r][n-1-r], matrix[n-1-r][n-1-i-r], matrix[n-1-i-r][r], matrix[r][i+r] = \ 
                matrix[r][i+r], matrix[i+r][n-1-r], matrix[n-1-r][n-1-i-r], matrix[n-1-i-r][r]

 

不原地旋转的思路就简单多了:

new_m = [[0]*3 for i in range(len(matrix))]
for i in range(n):
      for j in range(n):
          new_m[j][n-i-1] = matrix[i][j]

这个题目可以结合“54. 螺旋矩阵”一起看看。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值