题目
给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
示例 1:
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例 2:
给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/rotate-image
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解法
划重点:题目要求**原地旋转**
两重循环
第一重循环是遍历“层”,例如3X3的matrix,需要遍历2层;
第二重循环是遍历“元素”,如:
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
第二重循环中遍历1/3/9/7和2/6/8/4
## 注意:
第二重循环的个数要减少**“层”数目**的二倍,即 for i in range(n - 1 - 2*r)
class Solution:
def rotate(self, matrix: List[List[int]]) -> None:
"""
Do not return anything, modify matrix in-place instead.
"""
n = len(matrix)
new_m = [[0] * n for i in range(n)]
num_round = int(n / 2 + 0.5)
for r in range(num_round):
for i in range(n - 1 - 2*r):
matrix[i+r][n-1-r], matrix[n-1-r][n-1-i-r], matrix[n-1-i-r][r], matrix[r][i+r] = \
matrix[r][i+r], matrix[i+r][n-1-r], matrix[n-1-r][n-1-i-r], matrix[n-1-i-r][r]
不原地旋转的思路就简单多了:
new_m = [[0]*3 for i in range(len(matrix))]
for i in range(n):
for j in range(n):
new_m[j][n-i-1] = matrix[i][j]
这个题目可以结合“54. 螺旋矩阵”一起看看。