自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(101)
  • 资源 (1)
  • 收藏
  • 关注

原创 羽毛球步法综述

羽毛球步法是指运动员在场上为快速、准确到达击球位置而采用的各种脚步移动方法。步法是羽毛球技术的基础与核心,直接关系到击球质量、体能分配和比赛胜负。良好的步法能让你在场上移动更灵活、反应更迅速,为高质量的手法(握拍、发球、击球)提供支撑。定义:羽毛球运动中脚步移动的方法重要性:手法和步法构成羽毛球两大基本技术体系基本原则:快速、灵活、经济、稳定步法是羽毛球技术的根基——没有高效的步法,再好的手法也难以发挥。分类掌握,灵活组合。

2026-02-05 00:40:20 929

原创 Spark DataFrame常见的Transformation和Actions详解

DataFrame操作。

2026-02-02 16:30:51 691

原创 开源代码二次开发的分支处理策略

本地develop分支。本地feature分支。本地master分支。本地custom分支。

2026-02-02 16:04:05 770

原创 社会心理学概述

定义:研究个体和群体在社会相互作用中的心理和行为发生及变化规律。研究对象个体水平:社会化过程、人际交往、社会认知、态度形成与改变等。群体水平:群体结构、规范、偏见、攻击行为、合作与竞争等。学科定位:介于心理学与社会学之间,强调实证研究与理论构建。

2026-01-30 01:18:32 426

原创 “责权利”三角:打造自驱动的高效组织

没有权力的责任是奴役,没有责任的权力是腐败,没有利益的责任是忽悠。这句管理格言深刻揭示了权责利失衡的恶果。一流的组织,用责任牵引权力和利益,确保组织使命的达成。末流的组织,用利益和权力逃避责任,导致内部失灵和衰败。无论是设计组织架构、制定考核制度,还是推进政府改革,追求权、责、利的科学对等与统一,都是实现高效治理和可持续发展的根本之道。

2026-01-26 19:19:03 281

原创 Claude Code配置全攻略:从安装到安全隐私保护全解析,一文搞定!

Claude Code不会一次性上传整个代码工程智能选择性读取:基于任务需求读取必要文件渐进式访问:从了解结构到具体文件分析严格权限控制:所有操作都有权限提示隐私保护设计:代码片段处理有安全限制这种设计既保证了功能强大性,又维护了代码隐私和安全。对于大多数开发任务,这种按需访问的方式既高效又安全。最新功能参考ClaudeCode官方功能更新描述。

2026-01-23 08:46:17 699

原创 数据分析体系全览导图综述

【代码】数据分析体系全览导图综述。

2026-01-22 14:59:48 126

原创 大数据处理框架(Hadoop VS PySpark)

Hadoop和PySpark都是大数据处理框架,但它们有不同的架构和特点。PySpark可以运行在Hadoop之上,利用Hadoop的存储系统(HDFS)和资源管理(YARN),同时提供了更高效的内存计算能力。

2026-01-22 14:51:51 472

原创 大数据技术栈演进:从MapReduce到云原生计算的全面对比(2026年)

Spark 2.0引入的Structured Streaming提供端到端的Exactly-Once语义,支持微批(ProcessingTime)和连续处理(Continuous)两种模式,后者可实现<100ms的处理延迟[6]。:MapReduce采用"分而治之"思想,将计算任务分解为Map(映射)和Reduce(归约)两个阶段。:不要追求"银弹"技术,根据业务场景的实时性要求、数据规模、团队技能和成本约束,选择最适合的技术组合。已成为许多企业的标准选择,兼顾了批处理的稳定性和流处理的实时性。

2026-01-22 14:40:52 1158 2

原创 基于Spark配置+缓存策略+Junpyter Notebook 实现Spark数据加速调试

【代码】基于Spark配置+缓存策略+Junpyter Notebook 实现Spark数据加速调试。

2026-01-22 14:24:49 250

原创 YARN、YARN/K8s混合模式与Kubernetes分析对比

技术演进时间线:2010 ──▶ 2014 ──▶ 2016 ──▶ 2020 ──▶ 2025 ──▶ 未来│ │ │ │ │▼ ▼ ▼ ▼ ▼YARN初 K8s首 K8s成 YARN/K8s 云原生步构思 次发布 为CNCF 混合模式 大一统首个孵 (趋势)化项目对比维度YARNYARN/K8s混合模式诞生背景Hadoop生态系统资源管理传统大数据向云原生过渡方案容器编排的事实标准核心目标大数据批处理作业调度离在线混合负载统一管理通用工作负载编排与管理抽象层级应用级资源管理。

2026-01-22 14:05:36 570

原创 大数据技术演进(从传统Hadoop到Spark到云原生的技术演进路径)

【代码】大数据技术演进(从传统Hadoop到Spark到云原生的技术演进路径)

2026-01-21 17:20:57 796 1

原创 JetBrains 公司的产品策略和技术架构(IDEA(Java)和Pycharm(Python)的编辑器)

不是“不能”,而是“不为”:IDEA 在设计上完全有能力通过插件体系支持 Python(事实上它也确实支持),但 JetBrains 选择通过独立的 PyCharm 来提供最佳的 Python 开发体验。选择建议如果你主要或只使用 PythonPyCharm是你的不二之选。如果你主要进行 Java/JVM 开发,同时偶尔需要写 Python,使用并安装 Python 插件是最佳工作流。如果你需要频繁在多种语言(如 Java, Python, Go, PHP)间切换。

2026-01-21 16:54:56 433

原创 库文件动态链接库概念(DLL、SO)解析

DLL和SO都是实现代码共享和模块化编程的重要机制,主要区别在于目标平台不同。它们都属于动态链接库的范畴,与静态库形成对比。现代软件开发中,动态链接库因其灵活性和资源效率而被广泛使用,尤其是在大型应用程序和操作系统组件中。

2026-01-21 16:51:11 688

原创 DLL地狱(DLL Hell)

的典型体现,其本质是** “共享”与“版本隔离”之间的矛盾**。随着技术进步(如 SxS、.NET GAC、容器化),该问题已得到缓解,但在遗留系统或不规范安装的软件中仍可能遇到。理解其原理有助于更好地预防和解决此类兼容性问题。,但各自依赖的版本不同,一旦某个程序安装时覆盖了旧版本(或注册了不兼容的新版本),其他依赖该DLL的程序就可能。而导致的一系列兼容性问题。其核心矛盾在于:多个应用程序。DLL地狱是 Windows 生态中。,也称为“动态链接库地狱”,是。

2026-01-20 16:54:31 318

原创 英伟达和华为昇腾芯片算力天梯图

部分数据为估算值,表中数据仅供参考,性能可能因具体配置、软件优化等因素有所差异,

2026-01-15 14:42:35 401

原创 安装`numpy`包时遇到编译问题的多种解决方案: error: Microsoft Visual C++ 14.0 or greater is required. Get it with “Micr

的Python包,但是系统中缺少必要的C++编译工具。Anaconda提供了。

2026-01-14 11:39:36 423

原创 pip install pyspark时报错误的解决方案笔记: AttributeError: module ‘pypandoc‘ has no attribute ‘convert‘

参考github链接:[Apache Spark 移除了 pypandoc 的 PR](如果必须使用 PySpark 2.4.x,需强制使用兼容的。Poetry 默认使用 PEP 517 构建(通过。直接升级到 PySpark 3.0+ 版本(如。PySpark 2.4.x 在构建时依赖。),会动态安装构建依赖(包括最新版。),而旧版 PySpark 未限制。的版本上限,导致冲突。(>=1.8)移除了。方法,导致构建失败。),这些版本已移除对。

2026-01-14 11:38:40 25

原创 Palantir Foundry 五层架构模型详解

Palantir Foundry通过这种分层架构,将数据、模型、业务语义、分析和决策编排有机整合,帮助企业构建从数据洞察到业务行动的完整数字化运营体系。本体层作为核心创新,为企业提供了统一的业务语义基础,使AI和数据分析能够更好地理解和作用于真实业务世界。:连接企业各类数据源,提供统一的数据访问和管理。:为业务用户提供直观的分析工具。:将分析洞察转化为实际行动。:构建和部署数据科学模型。

2026-01-14 11:37:06 1233

原创 AI计算生态系统架构图

这个架构图展示了从底层硬件到上层应用的完整AI计算栈,可以帮助您更好地理解这些概念之间的关系和层次结构。

2026-01-13 10:52:00 284

原创 cpu指令集架构ISA(如x86、arm)及数据位宽(如32位、64位)和对应产品

维度x86 vs ARM32位 vs 64位本质指令集设计哲学数据处理能力关注点如何执行指令能处理多大数据兼容性软件需重新编译64位兼容32位典型应用x86: Windows电脑ARM: 手机、Mac32位: 旧设备64位: 现代设备总结:x86/ARM是"怎么干活",32/64位是"一次干多少活"。指令集架构和数据位宽两者是正交维度,可以任意组合。

2026-01-13 10:42:45 530

原创 AI计算技术栈架构图(2026年视角)

【代码】AI计算技术栈架构图(2026年视角)

2026-01-13 10:38:59 744

原创 Python 包是否需要编译的设计考虑因素

Python 包是否需要编译主要取决于其设计目的性能需求以及底层实现方式。

2026-01-12 20:00:19 312

原创 DPO、PPO、GRPO强化学习算法对比

DPO是一种针对大型语言模型的对齐技术,用于根据人类偏好调整模型权重。它与人类反馈强化学习(RLHF)的不同之处在于,它不需要拟合奖励模型,而是使用更简单的二元数据偏好进行训练。GRPO是一种强化学习算法,专门用于增强大型语言模型中的推理能力。它通过评估彼此相关的响应组来优化模型。PPO是一种基于Actor-Critic框架的强化学习算法,通过限制策略更新幅度保证训练稳定性。

2026-01-12 17:31:43 426

原创 大模型参数高效微调综述(微调大模型的选择、显存估算、参数高效微调(PEFT))

总训练时间则取决于您设置的训练轮数。这只是一个非常粗略的估计,实际时间需以实验为准。,用RAG提供外部知识,用PEFT(如LoRA)微调模型技能,兼顾效率、成本与性能。一张V100显卡(以32GB显存为例)的微调时间受。等多种因素影响,难以给出精确数字。:假设使用LoRA方法微调。

2026-01-12 17:26:53 634

原创 残差连接(ResNet)

残差连接(Residual Connection)是深度学习中的一种重要技术,最早在2015年由何恺明等人提出的。其中 ( W_s ) 是用于维度匹配的线性投影(如1×1卷积)。在传统网络中,每一层直接尝试拟合 ( H(x) )。(也叫跳跃连接,Skip Connection)。而在残差连接中,我们让这一层拟合。,而不是直接学习完整的输出。这里的 ( + x ) 就是。其中 ( x ) 是输入。

2026-01-08 14:19:49 432

原创 Agent2Agent (A2A) Protocol( A2A 协议)简介、组件

其关键组件包括 Agent Card、Client/Remote Agent、Task、Message/Part、Artifact、Discovery、Transport、Auth。这个流程中,每个代理之间通过 A2A 协议通信:Agent Card 发现、Task 创建、Message/Part 交换、Artifact 返回、状态追踪、必要的认证授权。:让代理“自己打广告”——谁我是、我在哪里(URL)、我能做什么(技能描述)、我需要什么认证(认证方式)。:角色区分很重要:客户端发起、远端执行。

2026-01-07 15:55:35 1070

原创 时间序列异常检测算法-基于统计的方法(如Z-Score、IQR)、基于距离的方法(如K近邻、LOF)、基于聚类的方法(如DBSCAN、HBOS)以及基于集成学习的方法(如Isolation Fores

2026-01-06 14:16:08 731

原创 时间序列异常检测基础系统概述(理论)

数据特性:数据量、维度、噪声水平异常类型:点异常、上下文异常、集体异常业务需求:实时性要求、误报容忍度、可解释性需求资源约束:计算资源、标注数据可用性通常采用分层检测策略,先用简单快速的方法过滤大部分正常数据,再用复杂方法精细分析可疑数据,以达到效率与准确性的平衡。

2026-01-06 14:10:49 923

原创 时间序列异常检测框架概述

时间序列异常检测(Time Series Anomaly Detection, TSAD)是识别时间序列数据中偏离正常模式的数据点或模式的技术。

2026-01-06 14:03:21 378

原创 Expected type ‘SecretStr | None‘, got ‘str‘ instead

代码中有一个类型不匹配的问题:函数或方法期望接收的类型是。如果你不是在处理敏感信息,可能需要检查是否误用了。),但实际传入了一个普通的。

2026-01-06 13:57:08 470

原创 时间序列异常检测基础系统概述(理论)

时间序列异常检测是一个多学科交叉领域,结合了统计学、机器学习、深度学习等技术。数据特性:数据量、维度、噪声水平异常类型:点异常、上下文异常、集体异常业务需求:实时性要求、误报容忍度、可解释性需求资源约束:计算资源、标注数据可用性。

2026-01-04 17:50:17 818

原创 windows系统执行`>docker compose up -d`报错Error response from daemon: Get “https://registry-1.docker.io/v2

如果文件不存在则创建,内容同上。:如果密码包含特殊字符(如。部分确认镜像源配置。

2025-12-30 17:52:13 453 1

原创 打开Docker DeskTop时报错“WSL needs updating Your version of Windows Subsystem for Linux (WSL) is too old.

建议先尝试方法一,大多数情况下,手动下载并安装WSL更新包可以解决这个问题。

2025-12-30 17:11:16 1761

原创 模型显存占用计算方法,以MOE架构的Mixtral 8x7B模型为例

结论:加载Mixtral 8x7B进行推理,显存需求主要取决于如何存储其56B的总参数。FP16精度(无量化):需要约 112 GB 显存。这需要至少2张(如2x80GB)或更多张高性能显卡。INT8量化:需要约 56 GB 显存。一张或无法加载。需要至少一张或勉强接近但可能不够(需考虑激活和KV Cache)。更稳妥的是使用两张24GB或以上的卡。GPTQ/AWQ 4-bit量化:需要约 28 GB 显存。这是消费级显卡的“门槛”。一张。

2025-12-27 14:20:02 711

原创 MOE模型架构提升推理速率和推理精度的原理

传统模型(稠密模型)的每一层,所有参数都对每个输入进行计算。而MOE层中,包含许多个“专家”(小型前馈神经网络)。

2025-12-27 14:17:07 973

原创 pycharm解释器还是编译时提示Unresolved reference ‘xxx‘,但可以正常运行代码

【代码】pycharm解释器还是编译时提示Unresolved reference ‘xxx‘,但可以正常运行代码。

2025-12-27 14:11:10 225

原创 N-Gram、RNN、LSTM、Transformer发展历程

从统计到神经网络:提升了模型表达能力从有限依赖到全局依赖:更好地捕捉语言结构从顺序计算到并行计算:大幅提升训练效率从专门模型到通用架构:Transformer成为基础架构目前Transformer架构及其变体已成为自然语言处理领域的主流,并在不断推动着AI技术的发展。

2025-12-27 14:08:00 544

原创 大模型领域三个不同维度的关键技术三种方式(对比学习、MOE、HSTU)

这是一种“在比较中学习”的范式。其核心思想不是让模型预测一个确切的标签,而是学习一个“表示空间”,在这个空间里,相似样本的表示距离近,不相似样本的表示距离远。希望这个详细的展开介绍能帮助您全面理解这三项重要技术。MOE是一种将“专家”组合起来的模型架构,旨在实现。的“系统级”黑科技。

2025-12-26 17:44:39 1070

原创 RAG常见向量数据库对比(截至2025年12月)

数据规模:从小型到超大规模的不同需求性能要求:延迟、吞吐量、召回率运维能力:团队技术栈和运维经验成本预算:开源免费 vs 商业托管特殊功能:混合搜索、多模态、实时更新等Pinecone(商业托管)Milvus(开源大规模)Qdrant/Weaviate(功能丰富),根据具体场景灵活选择。

2025-12-26 17:17:01 1309 1

DOTween Pro v0.9.290.zip

Unity DOTWeen动画插件

2021-09-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除