【ACM入门】整除、同余的概念及快速幂

本文介绍了整除和同余的基本概念,包括整除的性质和同余的八大性质,并强调了同余不满足同除性。重点讲解了快速幂算法,用于计算mn mod k的值,其时间复杂度为O(logn),适用于长整型范围内的自然数计算。
摘要由CSDN通过智能技术生成

整除、同余的概念及快速幂

整除、余数都是小学概念,但还是得学习一些细节。

整除

1、 a ∣ b a|b ab 代表b可以被a整除,b是a的倍数,a是b的约数。

2、约定0可以被任何数整除。

3、若存在整数 x x x , y y y 使得 a ∗ x + b ∗ y = 1 a*x+b*y = 1 ax+by=1,且 a ∣ n a|n an b ∣ n b|n bn,那么 ( a ∗ b ) ∣ n (a*b)|n (ab)n

其他性质比较显然,就不作赘述。

同余

基本概念

​ 若 a , b a, b a,b 两个自然数满足 m ∣ ( a − b ) m|(a-b) m(ab),则说a和b关于m同余,记为 a ≡ b ( m o d   m ) a \equiv b(mod\ m) ab(mod m)

同余具有以下性质

​ 1、自反性: a ≡ a ( m o d   m ) a \equiv a(mod\ m) aa(mod m)

​ 2、对称性:若 a ≡ b ( m o d   m ) a \equiv b(mod\ m) a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值