整除、同余的概念及快速幂
整除、余数都是小学概念,但还是得学习一些细节。
整除
1、 a ∣ b a|b a∣b 代表b可以被a整除,b是a的倍数,a是b的约数。
2、约定0可以被任何数整除。
3、若存在整数 x x x , y y y 使得 a ∗ x + b ∗ y = 1 a*x+b*y = 1 a∗x+b∗y=1,且 a ∣ n a|n a∣n、 b ∣ n b|n b∣n,那么 ( a ∗ b ) ∣ n (a*b)|n (a∗b)∣n
其他性质比较显然,就不作赘述。
同余
基本概念
若 a , b a, b a,b 两个自然数满足 m ∣ ( a − b ) m|(a-b) m∣(a−b),则说a和b关于m同余,记为 a ≡ b ( m o d m ) a \equiv b(mod\ m) a≡b(mod m)
同余具有以下性质
1、自反性: a ≡ a ( m o d m ) a \equiv a(mod\ m) a≡a(mod m)
2、对称性:若 a ≡ b ( m o d m ) a \equiv b(mod\ m) a