Generative Adversarial Active Learning for Unsupervised Outlier Detection
1.INTRODUCTION1.1 Outlier Detection应用领域异常轨迹运动目标检测欺诈检测新兴主题检测医疗信息检测1.2存在的问题需要足够多的正常、异常的标签(非常昂贵)通过假设整个数据集只包含正常实例,离群点检测通常被认为是一类分类问题。最直接的方法是为所有样本创建一个模型,然后根据与建立的正常配置文件的偏差计算离群值。具体方法有基于统计的模型、基于回归的...
原创
2019-11-25 21:34:18 ·
2830 阅读 ·
0 评论