G - 数字计数

Description

给定两个正整数 a 和 b,求在 [a,b] 中的所有整数中,每个数码(digit)各出现了多少次。

Input

仅包含一行两个整数 a,b,含义如上所述。

Output

包含一行十个整数,分别表示 0∼9 在 [a,b] 中出现了多少次。

Sample 1

Input

1 99

Output

9 20 20 20 20 20 20 20 20 20

Hint

数据规模与约定

  • 对于 30%30% 的数据,保证 1≤a≤b≤10^6;
  • 对于 100%100% 的数据,保证 1≤a≤b≤10^12;

思路:数位dp的模板题,a到b之间的数码个数可以转化为1到a-1和1到b之间的数码个数再相减,本题的重点在于对数码出现次数的预处理,首先从个位开始,每个数都出现一次,出现的次数相同,出现次数的状态可以转移到十位,对于十位,0123456789总计十个数字,对应了十位的每个数字都出现十次,然后到百位一直递推下去……,然后处理输入的数字a,b,比如6548,可以拆成6000,500,40,8。需要注意的是首位数字的出现次数和首位的0需要特殊处理。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll l,r;
ll ans1[10]={0},ans2[10]={0};
ll dp[15]={0},h[15]={1};
void func(ll n,ll *ans)
{
	 ll n1=n;
     int a[15];
     int len=0,i,j;
     while(n>0){
     	a[++len]=n%10;
     	n/=10;
	 }
	 for(i=len;i>0;i--){
	 	for(j=0;j<10;j++){
	 		ans[j]+=a[i]*dp[i-1];
		 }
		 for(j=0;j<a[i];j++){
		 	ans[j]+=h[i-1];
		 }
	  n1-=a[i]*h[i-1];
	  ans[a[i]]+=n1+1;
	  ans[0]-=h[i-1];	 	 	
	 }
}
int main()
{
	int i,j;
    scanf("%lld%lld",&l,&r);
    for(i=1;i<=13;i++){
    	dp[i]=dp[i-1]*10+h[i-1];
    	h[i]=10*h[i-1];
	}
	func(l-1,ans1),func(r,ans2);
	for(i=0;i<10;i++)printf("%lld ",ans2[i]-ans1[i]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值