Description
给定两个正整数 a 和 b,求在 [a,b] 中的所有整数中,每个数码(digit)各出现了多少次。
Input
仅包含一行两个整数 a,b,含义如上所述。
Output
包含一行十个整数,分别表示 0∼9 在 [a,b] 中出现了多少次。
Sample 1
Input
1 99
Output
9 20 20 20 20 20 20 20 20 20
Hint
数据规模与约定
- 对于 30%30% 的数据,保证 1≤a≤b≤10^6;
- 对于 100%100% 的数据,保证 1≤a≤b≤10^12;
思路:数位dp的模板题,a到b之间的数码个数可以转化为1到a-1和1到b之间的数码个数再相减,本题的重点在于对数码出现次数的预处理,首先从个位开始,每个数都出现一次,出现的次数相同,出现次数的状态可以转移到十位,对于十位,0123456789总计十个数字,对应了十位的每个数字都出现十次,然后到百位一直递推下去……,然后处理输入的数字a,b,比如6548,可以拆成6000,500,40,8。需要注意的是首位数字的出现次数和首位的0需要特殊处理。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll l,r;
ll ans1[10]={0},ans2[10]={0};
ll dp[15]={0},h[15]={1};
void func(ll n,ll *ans)
{
ll n1=n;
int a[15];
int len=0,i,j;
while(n>0){
a[++len]=n%10;
n/=10;
}
for(i=len;i>0;i--){
for(j=0;j<10;j++){
ans[j]+=a[i]*dp[i-1];
}
for(j=0;j<a[i];j++){
ans[j]+=h[i-1];
}
n1-=a[i]*h[i-1];
ans[a[i]]+=n1+1;
ans[0]-=h[i-1];
}
}
int main()
{
int i,j;
scanf("%lld%lld",&l,&r);
for(i=1;i<=13;i++){
dp[i]=dp[i-1]*10+h[i-1];
h[i]=10*h[i-1];
}
func(l-1,ans1),func(r,ans2);
for(i=0;i<10;i++)printf("%lld ",ans2[i]-ans1[i]);
return 0;
}