hadoop运行wordcount实例

1.查看hadoop版本

 

[hadoop@ltt1 sbin]$ hadoop version

Hadoop 2.6.0-cdh5.12.0

Subversion http://github.com/cloudera/hadoop -r dba647c5a8bc5e09b572d76a8d29481c78d1a0dd

Compiled by jenkins on 2017-06-29T11:33Z

Compiled with protoc 2.5.0

From source with checksum 7c45ae7a4592ce5af86bc4598c5b4

This command was run using /home/hadoop/hadoop260/share/hadoop/common/hadoop-common-2.6.0-cdh5.12.0.jar

 

2.通过hadoop自带的jar文件,可以简单测试一些功能。

查看hadoop-mapreduce-examples-2.6.0-cdh5.12.0.jar文件所支持的MapReduce功能列表

 

[hadoop@ltt1 sbin]$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0-cdh5.12.0.jar

An example program must be given as the first argument.

Valid program names are:

  aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files.

  aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files.

  bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi.

  dbcount: An example job that count the pageview counts from a database.

  distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi.

  grep: A map/reduce program that counts the matches of a regex in the input.

  join: A job that effects a join over sorted, equally partitioned datasets

  multifilewc: A job that counts words from several files.

  pentomino: A map/reduce tile laying program to find solutions to pentomino problems.

  pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method.

  randomtextwriter: A map/reduce program that writes 10GB of random textual data per node.

  randomwriter: A map/reduce program that writes 10GB of random data per node.

  secondarysort: An example defining a secondary sort to the reduce.

  sort: A map/reduce program that sorts the data written by the random writer.

  sudoku: A sudoku solver.

  teragen: Generate data for the terasort

  terasort: Run the terasort

  teravalidate: Checking results of terasort

  wordcount: A map/reduce program that counts the words in the input files.

  wordmean: A map/reduce program that counts the average length of the words in the input files.

  wordmedian: A map/reduce program that counts the median length of the words in the input files.

  wordstandarddeviation: A map/reduce program that counts the standard deviation of the length of the words in the input files.

 

3.在hdfs上创建文件夹

hadoop fs -mkdir /input

4.查看hdfs的更目录列表

[hadoop@ltt1 ~]$ hadoop fs -ls /
Found 2 items
drwxr-xr-x - hadoop supergroup 0 2017-09-17 08:11 /input
drwx------ - hadoop supergroup 0 2017-09-17 08:07 /tmp

5.上传本地文件到hdfs

hadoop fs -put $HADOOP_HOME/*.txt /input

6.查看hdfs上input目录下文件

[hadoop@ltt1 ~]$ hadoop fs -ls /input

Found 3 items-rw-r--r--   2 hadoop supergroup      85063 2017-09-17 08:15 /input/LICENSE.txt-rw-r--r--   2 hadoop supergroup      14978 2017-09-17 08:15 /input/NOTICE.txt-rw-r--r--   2 hadoop supergroup       1366 2017-09-17 08:15 /input/README.txt

7.wordcount简单测试。

 

[hadoop@ltt1 ~]$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0-cdh5.12.0.jar wordcount /input /output17/09/17 08:19:12 INFO input.FileInputFormat: Total input paths to process : 317/09/17 08:19:13 INFO mapreduce.JobSubmitter: number of splits:317/09/17 08:19:13 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1505605169997_000217/09/17 08:19:14 INFO impl.YarnClientImpl: Submitted application application_1505605169997_000217/09/17 08:19:14 INFO mapreduce.Job: The url to track the job: http://ltt1.bg.cn:9180/proxy/application_1505605169997_0002/17/09/17 08:19:14 INFO mapreduce.Job: Running job: job_1505605169997_000217/09/17 08:19:27 INFO mapreduce.Job: Job job_1505605169997_0002 running in uber mode : false17/09/17 08:19:27 INFO mapreduce.Job:  map 0% reduce 0%17/09/17 08:19:39 INFO mapreduce.Job:  map 33% reduce 0%17/09/17 08:19:48 INFO mapreduce.Job:  map 100% reduce 0%17/09/17 08:19:50 INFO mapreduce.Job:  map 100% reduce 100%17/09/17 08:19:50 INFO mapreduce.Job: Job job_1505605169997_0002 completed successfully17/09/17 08:19:50 INFO mapreduce.Job: Counters: 50

    File System Counters

        FILE: Number of bytes read=42705

        FILE: Number of bytes written=588235

        FILE: Number of read operations=0

        FILE: Number of large read operations=0

        FILE: Number of write operations=0

        HDFS: Number of bytes read=101699

        HDFS: Number of bytes written=30167

        HDFS: Number of read operations=12

        HDFS: Number of large read operations=0

        HDFS: Number of write operations=2

    Job Counters

        Launched map tasks=3

        Launched reduce tasks=1

        Data-local map tasks=2

        Rack-local map tasks=1

        Total time spent by all maps in occupied slots (ms)=47617

        Total time spent by all reduces in occupied slots (ms)=8244

        Total time spent by all map tasks (ms)=47617

        Total time spent by all reduce tasks (ms)=8244

        Total vcore-milliseconds taken by all map tasks=47617

        Total vcore-milliseconds taken by all reduce tasks=8244

        Total megabyte-milliseconds taken by all map tasks=48759808

        Total megabyte-milliseconds taken by all reduce tasks=8441856

    Map-Reduce Framework

        Map input records=2035

        Map output records=14239

        Map output bytes=155828

        Map output materialized bytes=42717

        Input split bytes=292

        Combine input records=14239

        Combine output records=2653

        Reduce input groups=2402

        Reduce shuffle bytes=42717

        Reduce input records=2653

        Reduce output records=2402

        Spilled Records=5306

        Shuffled Maps =3

        Failed Shuffles=0

        Merged Map outputs=3

        GC time elapsed (ms)=881

        CPU time spent (ms)=22320

        Physical memory (bytes) snapshot=690192384

        Virtual memory (bytes) snapshot=10862809088

        Total committed heap usage (bytes)=380243968

    Shuffle Errors

        BAD_ID=0

        CONNECTION=0

        IO_ERROR=0

        WRONG_LENGTH=0

        WRONG_MAP=0

        WRONG_REDUCE=0

    File Input Format Counters

        Bytes Read=101407

    File Output Format Counters

        Bytes Written=30167

 

8.查看wordcount运行结果(由于结果太长,只举出了部分结果)

 

[hadoop@ltt1 ~]$ hadoop fs -cat /output/*

worldwide,    4

would    1

writing    2

writing,    4

written    19

xmlenc    1

year    1

you    12

your    5

zlib    1

 252.227-7014(a)(1))    1

§    1

“AS    1

“Contributor    1

“Contributor”    1

“Covered    1

“Executable”    1

“Initial    1

“Larger    1

“Licensable”    1

“License”    1

“Modifications”    1

“Original    1

“Participant”)    1

“Patent    1

“Source    1

“Your”)    1

“You”    2

“commercial    3

“control”    1

 

至此,通过一个wordcount的一个小栗子,简介实践了一下hdfs的创建文件夹,上传文件,查看目录,运行wordcount实例。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值