一文读懂AI大模型中的Agent技术

一、Agent技术:大模型进化的新形态

1.1 什么是AI Agent?

AI Agent(智能体)是基于LLM(大语言模型)构建的具备环境感知→决策推理→行动执行完整能力链的智能系统。Agent能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标。与单纯的语言模型相比,其核心特征在于:

  • 自主性:无需人工干预的闭环运行

  • 工具调用:API/插件/代码解释器使用能力

  • 记忆机制:短期记忆+长期记忆的复合架构

  • 目标导向:通过Reward机制驱动任务完成

与传统Chatbot的本质区别在于:Agents不仅能回答问题,还能通过动态规划完成复杂任务链条,例如自动生成数据分析报告、跨平台信息整合等。

1.2 Agent技术演进图谱

二、大模型Agent核心架构剖析

2.1 系统架构

  • 规划(Planning):Agent的思维模型,负责将复杂任务拆解为可执行的子任务,并评估执行策略。通过大模型提示工程(如ReAct、CoT推理模式)实现,使Agent能够精准拆解任务,分步解决。

  • 记忆(Memory):包括短期记忆和长期记忆。短期记忆用于存储会话上下文,支持多轮对话;长期记忆则存储用户特征、业务数据等,通常通过向量数据库等技术实现快速存取。

  • 工具(Tools):Agent感知环境、执行决策的辅助手段,如API调用、插件扩展等。通过接入外部工具(如API、插件)扩展Agent的能力。

  • 行动(Action):Agent将规划与记忆转化为具体输出的过程,包括与外部环境的互动或工具调用。

AI Agent通常由以下四个核心组件构成:Agent = LLM + 记忆 + 规划技能 + 工具使用

2.2 系统架构三要素

模块 功能描述 实现技术案例
大脑 任务分解与策略制定 GPT-4/Claude/Llama
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

awei0916

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值