一、Agent技术:大模型进化的新形态
1.1 什么是AI Agent?
AI Agent(智能体)是基于LLM(大语言模型)构建的具备环境感知→决策推理→行动执行完整能力链的智能系统。Agent能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标。与单纯的语言模型相比,其核心特征在于:
-
自主性:无需人工干预的闭环运行
-
工具调用:API/插件/代码解释器使用能力
-
记忆机制:短期记忆+长期记忆的复合架构
-
目标导向:通过Reward机制驱动任务完成
与传统Chatbot的本质区别在于:Agents不仅能回答问题,还能通过动态规划完成复杂任务链条,例如自动生成数据分析报告、跨平台信息整合等。
1.2 Agent技术演进图谱
二、大模型Agent核心架构剖析
2.1 系统架构
-
规划(Planning):Agent的思维模型,负责将复杂任务拆解为可执行的子任务,并评估执行策略。通过大模型提示工程(如ReAct、CoT推理模式)实现,使Agent能够精准拆解任务,分步解决。
-
记忆(Memory):包括短期记忆和长期记忆。短期记忆用于存储会话上下文,支持多轮对话;长期记忆则存储用户特征、业务数据等,通常通过向量数据库等技术实现快速存取。
-
工具(Tools):Agent感知环境、执行决策的辅助手段,如API调用、插件扩展等。通过接入外部工具(如API、插件)扩展Agent的能力。
-
行动(Action):Agent将规划与记忆转化为具体输出的过程,包括与外部环境的互动或工具调用。
AI Agent通常由以下四个核心组件构成:Agent = LLM + 记忆 + 规划技能 + 工具使用
2.2 系统架构三要素
模块 | 功能描述 | 实现技术案例 |
---|---|---|
大脑 | 任务分解与策略制定 | GPT-4/Claude/Llama |