TensorFlow2
文章平均质量分 74
TensorFlow2相关知识及案例
鹏阿鹏
计算机硕士,一名搞笑程序员,兴趣:Java后端、Web前端、机器学习与算法。
展开
-
基于TensorFlow2实现MalConv恶意软件检测
给出TensorFlow2实现MalConv的示例代码原创 2023-04-15 22:14:35 · 366 阅读 · 0 评论 -
【优化算法】使用遗传算法优化MLP神经网络参数(TensorFlow2)
使用遗传算法对神经网络参数进行优化,提高深度学习模型的准确率。(Python、TensorFlow2、scikit-opt)原创 2023-04-13 11:54:58 · 2936 阅读 · 0 评论 -
解决tensorflow:No training configuration found in the save file, so the model was *not* compiled
解决方案WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.原创 2022-09-13 13:56:50 · 3566 阅读 · 0 评论 -
【迁移学习】猫狗数据分类案例(TensorFlow2)
2 数据处理共2000张猫狗图片数据集,下载地址:Kaggle dc_20003 创建模型,使用VGG16作为预训练模型输出:4 训练模型原创 2022-07-05 16:17:54 · 1381 阅读 · 0 评论 -
【AI安全】对抗样本之FGSM的代码实现(TensorFlow2)
FGSM(Fast Gradient Sign Method)由Ian J. Goodfellow等人于2015年提出,论文地址【https://arxiv.org/abs/1412.6572】,是最早也是最受欢迎的欺骗神经网络的攻击之一。如图所示,攻击者对原始熊猫图像添加了小的扰动,导致了模型将这张图像标记为长臂猿。FGSM利用神经网络的梯度来创建一个对抗样本。对于输入的图像,该方法使用损失相对于输入图像的梯度来创建一个新的图像,使损失最大化。adv_x=x+ϵ∗sign(∇xJ(θ,x,y))ad原创 2022-05-31 22:51:50 · 2371 阅读 · 0 评论 -
【生成对抗网络】ACGAN的代码实现
文章目录1. ACGAN简介2. 基于TensorFlow2的ACGAN实现(MNIST数据集)2.1 导包2.2 数据准备2.3 生成器模型2.4 判别器模型2.5 定义损失函数及优化器2.6 定义批次训练函数2.7 定义绘图函数2.8 定义主训练函数2.9 模型训练与结果展示2.10 使用生成器1. ACGAN简介前面博客中介绍了一般的GAN代码实现,能生成一个图像,但是无法生成指定类别的图像,ACGAN则补充了这部分功能,通过将类别信息添加到生成器与判别器中,从而能够产生指定类别的数据。ACGA原创 2022-05-28 16:21:36 · 4228 阅读 · 4 评论 -
【生成对抗网络】GAN入门与代码实现(二)
上篇博客:生成对抗网络GAN入门与代码实现(一)本篇主要介绍简单GAN的另一种实现方法(不使用卷积),依然使用TensorFlow2进行搭建,主要运用了TensorFlow2中的求导机制进行自定义训练,自由度更高。对比上篇博客中的实现方法可加深对GAN的编写理解。文章目录1 导包2 数据准备3 生成器模型4 判别器模型5 编写损失函数,定义优化器6 获取模型&定义训练批次函数7 定义可视化方法8 主训练方法9 开始训练10 训练结果1 导包import tensorflow as tf #原创 2022-05-01 18:28:15 · 3064 阅读 · 1 评论 -
【生成对抗网络】GAN入门与代码实现(一)
文章目录1. 生成对抗网络介绍2. 基于TensorFlow2的GAN的简单实现2.1 导包与参数设置2.2 生成器2.3 判别器2.4 搭建生成对抗网络2.5 数据准备与预处理2.6 主训练方法2.7 绘图函数2.8 开始训练2.9 loss与acc绘图2.10 结果1. 生成对抗网络介绍生成对抗网络(Generative Adversarial Network)于2014年被Goodfellow等人提出,然后迅速流行。GAN能通过学习特定领域知识创造出新的图像、文本等。2016年,GAN热潮席卷人工原创 2022-04-21 21:15:40 · 11487 阅读 · 18 评论 -
【生成对抗网络】基于DCGAN的二次元人物头像生成(TensorFlow2)
文章目录1 导包2 数据准备3 定义生成器4 定义判别器5 定义损失函数和优化器6 定义训练批次函数7 定义可视化训练结果函数8 定义训练主函数9 训练10 结果11 使用生成器DCGAN(深度卷积生成对抗网络Deep Convolutional GAN)的论文地址:论文地址1 导包tensorflow版本为2.6.2import tensorflow as tf from tensorflow import kerasfrom tensorflow.keras import layersim原创 2022-04-18 23:10:55 · 3415 阅读 · 2 评论 -
基于TensorFlow2的神经网络MNIST手写数字识别(多层感知机)
文章目录1 导包2 数据导入与处理3 创建模型(MLP多层感知器)4 定义优化器与损失函数5 编译模型与训练6 训练过程结果可视化7 预测示例1 导包import tensorflow as tfimport matplotlib.pyplot as pltimport numpy as np%matplotlib inline2 数据导入与处理# 数据导入,获取训练集和测试集(train_image, train_labels), (test_image, test_labels) =原创 2022-04-12 23:48:41 · 2109 阅读 · 0 评论 -
基于Tensorflow2的基本自编码器实现(MNIST)
基于Tensorflow2的基本自编码器实现(MNIST)文章目录基于Tensorflow2的基本自编码器实现(MNIST)1. 导包2. 数据准备3. 模型创建4. 模型编译与训练5. 从模型中获取编码器与解码器6. 使用测试集进行测试关于自编码器的知识这里暂不做过多介绍,我们直接在手写数字集MNIST上进行演示效果。1. 导包import tensorflow as tf # 2.0import matplotlib.pyplot as plt2. 数据准备# 加载数据(x_trai原创 2022-04-03 21:35:10 · 1564 阅读 · 0 评论 -
基于Tensorflow2的卷积神经网络MNIST手写数字识别
通过Tensorflow2中的keras搭建CNN卷积神经网络的手写数字识别的多分类实战原创 2022-04-02 22:22:48 · 2943 阅读 · 0 评论 -
TensorFlow2中三种创建模型的方法(以鸢尾花数据集为例)
文章目录1. 导包2. 数据准备3. 模型搭建与训练方法1:Sequential模型方法2:函数模型方法3:子类模型(自定义类)1. 导包import tensorflow as tf # tf为2.3版本import tensorflow as kerasfrom sklearn.datasets import load_iris # 导入鸢尾花数据(需pip安装scikit-learn)from sklearn.model_selection import train_test_split原创 2022-05-27 14:44:33 · 805 阅读 · 0 评论 -
TensorFlow2中Embedding层的使用(tf.keras.layers.Embedding)
文章目录1 简介参数2 示例一2.1数据准备2.2 模型搭建与测试2.3 查看结果3 示例二1 简介嵌入层将正整数(下标)转换为具有固定大小的向量,如==[[4],[20]]->[[0.25,0.1],[0.6,-0.2]]==Embedding层只能作为模型的第一层tf.keras.layers.Embedding( input_dim, output_dim, embeddings_initializer='uniform', embeddings_regu原创 2022-04-10 19:46:57 · 6190 阅读 · 1 评论 -
TensorFlow2中tf.data.Dataset对象的使用(常用函数总结)
tf.data.Dataset接口是一个生成Dataset数据的高级借口,在对于大型数据集的处理中有很大帮助,同时这也是官方推荐使用的数据处理方式。常用函数1 导包2 Dataset数据创建3 数据随机打散4 设置批大小5 重复数据6 数据映射7 数据拼接8 打包成元组...原创 2022-04-09 22:27:48 · 2483 阅读 · 0 评论 -
TensorFlow2.0自动求导机制(tf.GradientTape的用法)
Tensorflow2.0自动求导机制在机器学习中,我们经常需要计算函数的导数,Tensorflow提供了自动求导机制来计算导数。1 使用tf.GradientTape()计算y=x2y=x^2y=x2的导数import tensorflow as tf # tf为2.0版本 python版本为3.6x = tf.Variable(initial_value = 3.0) # 定义变量x,初始化为3with tf.GradientTape() as tape: # 在tf.GradientTap原创 2022-03-28 09:47:26 · 3325 阅读 · 0 评论