关于洛必达法则的一些验证

关于洛必达法则的一些验证

洛必达法则

具体的证明过程可以参考洛必达证明
https://www.zhihu.com/question/509395711/answer/2294035863
通过罗尔中值定理得到柯西中值定理进而得到极限的洛必达法则,简单的结论就是:
根据洛必达法则,当x趋向0+时候有
lim ⁡ sin ⁡ ( x ) / x = lim ⁡ cos ⁡ ( x ) \lim\sin(x)/x=\lim \cos(x) limsin(x)/x=limcos(x)

此时,为了方便展示极限收敛的趋势,绘制了0到1的两个函数的曲线图
sin(x)/x 与 cos(x) 对比图
从图中可以看出两者极限都是接近1,但是相同x下逼近的数值不一样,根据公式:
在这里插入图片描述
在这里插入图片描述
在这里我们试图找到相应x下对应的 ξ \xi ξ 的值
在这里插入图片描述
经过求解分析得到如上的图,可以看出再是间断的线性形式,一方面确实存在值满足定理,数值验证了结果,另一方面可以得出两个函数的收敛阶是一致 而且直线的斜率接近1,说明两者的收敛速度应该是接近一致的,这侧面验证了洛必达法则的准确性(说明两者同样快的速度再0处收敛)。
上述结论是猜想与个人验证,不是专业评论,欢迎有懂小伙伴讨论

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值