关于洛必达法则的一些验证
洛必达法则
具体的证明过程可以参考洛必达证明
https://www.zhihu.com/question/509395711/answer/2294035863
通过罗尔中值定理得到柯西中值定理进而得到极限的洛必达法则,简单的结论就是:
根据洛必达法则,当x趋向0+时候有
lim
sin
(
x
)
/
x
=
lim
cos
(
x
)
\lim\sin(x)/x=\lim \cos(x)
limsin(x)/x=limcos(x)
此时,为了方便展示极限收敛的趋势,绘制了0到1的两个函数的曲线图
从图中可以看出两者极限都是接近1,但是相同x下逼近的数值不一样,根据公式:
在这里我们试图找到相应x下对应的
ξ
\xi
ξ 的值
经过求解分析得到如上的图,可以看出再是间断的线性形式,一方面确实存在值满足定理,数值验证了结果,另一方面可以得出两个函数的收敛阶是一致 而且直线的斜率接近1,说明两者的收敛速度应该是接近一致的,这侧面验证了洛必达法则的准确性(说明两者同样快的速度再0处收敛)。
上述结论是猜想与个人验证,不是专业评论,欢迎有懂小伙伴讨论